
ABI Software Book
Release 0.2-PMR@HARMONY

Auckland Bioengineering Institute

Mar 27, 2017

Contents

1 About the ABI 3

2 ABI research case studies 5

3 CellML API user documentation 7

4 Cmgui user documentation 9

5 OpenCMISS user documentation 75

6 PMR user documentation 101

7 Documentation to do list 129

8 Indices and tables 131

i

ii

ABI Software Book, Release 0.2-PMR@HARMONY

This book is a collection of documentation covering software used within the ABI. This includes software devel-
oped internally and also other commonly used applications.

Contents:

Contents 1

ABI Software Book, Release 0.2-PMR@HARMONY

2 Contents

CHAPTER 1

About the ABI

History, research groups, opportunities etc etc.

Contents:

ABI Resources

Documentation covering what resources are available for Msc and PhD students to carry out their research.

Computer hardware and software

• Details of computers available to students.

• Operating system options

• List of software packages available for installation

• License issues

• Information about help, IT staff etc.

workshop

Other

3

ABI Software Book, Release 0.2-PMR@HARMONY

4 Chapter 1. About the ABI

CHAPTER 2

ABI research case studies

Examples of research at the ABI - goals, tools and techniques used, outcomes.

To serve as examples of how to use the available tools, as well as promotional material.

If you would like your research to appear in this section, please let me know, or fork this documentation on
GitHub!

5

ABI Software Book, Release 0.2-PMR@HARMONY

6 Chapter 2. ABI research case studies

CHAPTER 3

CellML API user documentation

7

ABI Software Book, Release 0.2-PMR@HARMONY

8 Chapter 3. CellML API user documentation

CHAPTER 4

Cmgui user documentation

This documentation provides an overview of the functionality of the cmgui application, as well as some informa-
tion about the architecture of the software, and some of the concepts behind the visualizations.

This documentation is current for cmgui version 2.9.0.

Migration documentation for users of previous versions

Some of the changes in recent versions of cmgui will cause some old commands to break - changes may need to
be made to some old command files. Below are links to documents detailing these changes.

Changes in recent versions

Migrating to Cmgui 2.8

Scenes and graphics filters

The biggest change in cmgui 2.8 is that graphics are now associated with regions and not stored in a separate
‘scene graph’. The Scene Editor displays the region tree, and each region has a graphical ‘rendition’ consisting of
a list of graphics (lines, surfaces, node_points etc.) which visualize the fields of that region. This change should
not affect most users, because previous versions of cmgui made the scene graph mirror the flat list of regions and
groups used in most models and the commands to set up these graphics should work as before.

However, if your command file created new scenes (or modified certain attributes of scene ‘default’), or your
model consisted of more than just a simple list of regions and groups (i.e. regions within regions within the root
region) you will need to make some changes.

Rendition or ‘graphical element’

Since graphics now belong to a region, the commands to create them now take the region path instead of the name
of the ‘graphical element’ (now termed ‘rendition’) on a particular scene:

gfx modify g_element REGION_PATH ...

9

ABI Software Book, Release 0.2-PMR@HARMONY

Argument scene NAME is now redundant and ignored. Since the automatic name for the ‘g_element’ was the
region or group name, most previous commands work as before.

Scenes

Scenes remain as the objects determining which graphics are displayed in a window or exported by various com-
mands. However they are considerably simplified in that their main attributes are (1) the top region they show
graphics for and (2) A graphics ‘filter’ object which controls which graphics from the region tree are visible (see
later).

The command for creating or modifying a scene is as follows:

Usage : gfx define scene ??
SCENE_NAME

<add_light LIGHT_NAME|none[none]>
<region PATH_TO_REGION[/]>
<remove_light LIGHT_NAME|none[none]>
<filter GRAPHICS_FILTER_NAME|none[none]>

(gfx modify scene is the same as gfx define scene. Note future plans are to remove lights from
scenes and list them as special graphics as part of a rendition.)

The gfx create scene command has been removed because invariably the command file must be manually
updated to replace it, and it is now no longer necessary to create ‘child’ scenes to make hierarchical graphics.
Cmgui developers are happy to help with migration.

Graphics filters

Graphics filters are new objects which control which graphics are shown in a scene. Each filter has a criterion
for matching attributes of a graphic or region/rendition, and if the result is true the graphic is shown. The initial
graphics types include:

• matching visibility flags

• matching graphic name

• matching (within) region path

• logical operator OR

• logical operator AND

Furthermore, all criteria can be inverted to create logical not:

Usage : gfx define graphics_filter ??
GRAPHICS_FILTER_NAME

* Filter to set up what will be and what will not be

* included in a scene. The optional inverse_match flag

* will invert the filter's match criterion. The behaviour

* is to show matching graphic with the matching criteria.

* <match_graphic_name> filters graphic with the matching

* name. <match_visibility_flags> filters graphic with

* the setting on the visibility flag. <match_region_path>

* filters graphic in the specified region or its subregion.

* <operator_or> filters the scene using the logical operation

* 'or' on a collective of filters. <operator_and> filters

* the scene using the logical operation 'and' on a collective

* of filters. Filters created earlier can be added or

* removed from the <operator_or> and <operator_and> filter.
<operator_or

<add_filters[add_filters]|remove_filters>
FILTER_NAMES >

10 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

<operator_and
<add_filters[add_filters]|remove_filters>

FILTER_NAMES >
<match_graphic_name MATCH_NAME>
<match_visibility_flags>
<match_region_path REGION_PATH>
<inverse_match|normal_match[normal_match]>

The default filter matches the familiar visibility flags of the region/rendition and each graphic:

gfx define graphics_filter default normal_match match_visibility_flags;

The following makes a filter that shows all graphics satisfying the above default OR if graphics is named “bob”:

gfx define graphics_filter bob normal_match match_graphic_name "bob";
gfx define graphics_filter default_or_bob normal_match operator_or add_filters
→˓default bob;
gfx define scene default filter default_or_bob;

Note it is easy for us to add new filter types as needed by users.

Drawing static graphics

Cmgui now associates all graphics with a region rather than a separate ‘scene graph’, so all previous commands
to create and draw ‘static’ graphics on a scene are removed or changed. The equivalent functionality is achieved
by adding a ‘point’ graphic to a region rendition in the scene editor, which can show any glyph with controllable
scale, offset, material and optional label. The commands for reproducing the graphics can be obtained using gfx
list g_element REGION_PATH commands.

• gfx create axes now just writes a migration note as it is redundant. Several axes objects are prede-
fined in the glyph list to be used with point graphics. See comment on gfx draw below.

• gfx create annotation has been removed. You must now define a string field in the respective re-
gion with the required text (gfx define field ![REGION_PATH/]NAME string constant
"Your text here") and use it as a label, probably with glyph none, on a point graphic.

• gfx create colour_bar works as before but the colour bar is now put in the list of glyphs able to be
shown with any point graphic.

• gfx create lines/surfaces/node_points ... have been removed altogether. You must now
use gfx modify g_element REGION_PATH lines/surfaces/node_points

• ‘gfx draw’ now creates a point graphic in the root region rendition with the glyph matching the graphics
name specified. If you had previously created axes with the default name “axes” it finds the glyph however
the scaling, offset and material are lost: edit these in the scene editor. The scene is ignored by this command
so you will need to make changes if you were drawing to multiple scenes, particularly an overlay scene (see
migration notes for overlay graphics below).

• ‘gfx erase’ has been removed.

Overlay graphics and coordinate systems

Previous versions of cmgui required an ‘overlay scene’ attribute to be set for each graphics window. Any graphics
drawn in the selected overlay scene were drawn in a window-relative coordinate system on that window.

This has been replaced by a far simpler and more powerful mechanism. Each graphic in the scene editor has a
‘graphics coordinate system’ which can be:

• LOCAL = subject to the graphical transformations of the renditions in the region tree relative to world (the
default).

4.1. Migration documentation for users of previous versions 11

ABI Software Book, Release 0.2-PMR@HARMONY

• WORLD = in the world coordinate system of the top region of the scene

• NORMALISED_WINDOW_FILL = ranges from ![-1,+1] across all dimension of window so distorting if
window is non-square. This was the mode used by the overlay scene.

• NORMALISED_WINDOW_FIT_LEFT/RIGHT/BOTTOM/TOP = ranges from ![-1,+1] in the largest
square fitting in the window, aligned to the specified side. Non-distorting so perferable to NOR-
MALISED_WINDOW_FILL.

• WINDOW_PIXEL_BOTTOM_LEFT/TOP_LEFT = In screen pixels from (0,0) at the specified origin of
the window, with +x to the right, +y up. TOP_LEFT has negative y coordinates on screen.

Choosing any window-relative coordinate system causes the graphic to be drawn as an overlay, i.e. on top of all
non-overlay graphics, on rendering windows. Window-relative graphics cannot be exported to VRML and other
formats without a viewport.

Future plans are to allow layers to be specified independently from the graphics coordinate system, with layers
‘background’, ‘default’ and ‘overlay’ predefined and the ability to add more layers and control whether the depth
buffer is cleared between layers.

Removal of ‘general settings’ for graphics

In previous versions of cmgui, the graphical rendition of a region (g_element commands) had a set of ‘general
settings’ controlling the ‘discretisation’ (number of line segments used to approximate curved element bound-
aries), and also a default coordinate field to apply to graphics which do not have the coordinate field specified.

For cmgui 2.8 all these general settings have been removed and must be specified for each graphic in the ren-
dition. This has the benefit of allowing different graphics to use different discretisations, which are now set via
‘tessellation’ objects (see later).

To minimize migration issues, all previous gfx modify g_element REGION_PATH general ... op-
tions are read and become defaults for subsequent g_element commands to add graphics. If the general ‘ele-
ment_discretization’ attribute is set then on creating new graphics requiring a tessellation it finds or creates one
giving the same effect as the discretization; it will have an automatically generated name such as ‘temp2’. Chang-
ing these general options now has no effect on graphics that have already been created. The only non-deprecated
g_element general command option is to clear all graphics from the rendition.

Note that region renditions still have transformation attributes which give the 4x4 transformation from local to
parent coordinate systems.

Tessellation

Tessellation objects have been introduced to replace the general ‘element_discretization’ attribute and solve several
problems:

• they allow any number of graphics – and not just from the same region – to share tessellation settings,
allowing graphics quality across complicated model visualisations to be changed from a few controls.

• they allow tessellation quality to automatically switch from minimum for linear basis functions to fine for
non-linear bases and coordinate systems. (Note: bilinear and trilinear Lagrange are considered linear even
though they have a few quadratic or cubic product terms.)

• we anticipate adding more options in future e.g. adaptive curvature-dependent triangulation, but graphics
will still only require one object to be chosen.

However, tessellation objects do not solve one problem, that choosing a very large number causes Cmgui to lock
up while all affected graphics are regenerated: take care when setting large values!

Note that elements_points and streamlines do not have a tessellation object set by default. Instead they have a
separate fixed ‘discretization’ setting which defaults to “1*1*1” (i.e. 1 point or streamline per element), but you
may add a tessellation which then acts as a multiplier on the discretization. The optional native_discretization
field also acts as a multiplier.

12 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Commands for defining tessellations are:

Usage : gfx define tessellation ??
TESSELLATION_NAME

* Defines tessellation objects which control how finite

* elements are subdivided into graphics. The minimum_divisions

* option gives the minimum number of linear segments

* approximating geometry in each xi dimension of the

* element. If the coordinate field of a graphic uses

* non-linear basis functions the minimum_divisions is

* multiplied by the refinement_factors to give the refined

* number of segments. Both minimum_divisions and refinement_factors

* use the last supplied number for all higher dimensions,

* so "4" = "4*4" and so on.
<minimum_divisions "#*#*..."["1"]{>=0}>
<refinement_factors "#*#*..."["1"]{>=0}>

You can also list all available tessellations with:

gfx list tessellation

The default tessellation exists from start-up, but can be edited:

gfx define tessellation default minimum_divisions "1" refinement_factors "4";

A tessellation editor dialog can be opened by clicking on the “Edit...” button beside the tessellation chooser in the
scene editor.

Migrating to Cmgui 2.9

In the 2.9.0 release, significant changes have been made to the way ‘groups’ are handled. We have also removed
the automatic creation of default lines on reading a model.

While we’ve taken every effort to minimise the impact of the changes, usually by making commands do the nearest
equivalent behaviour, some breaks are unavoidable. So if your command files are not working as before, please
try to see why in the following explanation, but if that doesn’t help, see the Cmgui development team. As always,
if you find what looks like a bug in the software, please report it on our tracker.

Removal of ‘group regions’

Background

A Cmgui model is made up of a tree of objects called regions, each of which owns a set of nodes, elements, data
points (an extra set of nodes) and fields defined on them, plus 0 or more child regions. Regions are like the folders
in a file system; fields (and other ‘intra region’ objects such as sets of nodes and meshes) are like files in the folder.
The root region is denoted by “/”, and region names in a path are separated by “/”.

A ‘group’ is a subset of the nodes, elements and data points owned by a region. Prior to this release, each group
was created as a pseudo region, what we called a ‘group region’. This meant they looked like a region except
they contained a subset of the objects of the parent/master region, and listed all fields of the master region (but
could only address those defined over its subset). This also meant every group could individually have graphics
associated with it. For users, the downsides of group regions were that they hid away the definitions of their
subgroups so it was not possible to intersect or union them in field expressions, it was not possible to make
invisible subgroups (they all had a graphical rendition), and it was impossible to make hierarchical groups and
groups containing whole regions. For developers they have been a maintenance hazard and a feature we did not
wish to expose to our API.

4.1. Migration documentation for users of previous versions 13

ABI Software Book, Release 0.2-PMR@HARMONY

The Change

From Cmgui 2.9, groups are implemented as fields. A group field returns 1 at any location in the domain (at nodes,
in elements etc.) which is in the group, 0 elsewhere. From the API you can add the whole region to a group, but
this is not available through gfx commands. Group fields can have subregion groups in child regions, so a group
tree can contain an arbitrary subset of a region tree. The group field can have zero or more ‘subobject group fields’
representing subsets of specific object types that are present in the group, each of which give the value 1 on the
respective object type in the group, 0 otherwise. For example, if you read cube example a2 and write “gfx list
fields” you will now see 5 new fields:

cube : group = generic group object
cube.cmiss_mesh_1d : sub_group_object = subset of "cmiss_mesh_1d" in group cube
cube.cmiss_mesh_2d : sub_group_object = subset of "cmiss_mesh_2d" in group cube
cube.cmiss_mesh_3d : sub_group_object = subset of "cmiss_mesh_3d" in group cube
cube.cmiss_nodes : sub_group_object = subset of "cmiss_nodes" in group cube

Note: In several new commands, “cmiss_nodes” is the name you use to reference the set of nodes in the region,
“cmiss_data” references the set of data points, and “cmiss_mesh_Nd” references the 1, 2 and 3-D meshes owned
by that region. In future we anticipate allowing any number of meshes to be created with their own names.

Since Cmgui 2.8, when you select objects in the graphics window, you are making a group which is automatically
given the name “cmiss_selection”, and any selected objects are added to subobject groups coordinated under it.
For example, selecting a face element of the cube creates:

cmiss_selection : group
cmiss_selection.cmiss_mesh_2d : sub_group_object

There is now only one type of group; the previous group regions and the selection have been merged into the same
class.

Prefer Regions to Groups

Shortly we will explain several of the workarounds that make most existing command files work as before, most
of the time. But first we wish to recommend using regions instead of groups whenever possible, and if you can
do this your command files will likely work just as before. Needlessly using a group means all your objects are
listed twice, once for the region and once for the group, which consumes more memory. To migrate to regions,
just change lines in EX files from:

Group name: NAME

to (and the leading "/" is required):

Region: /NAME

(The Region can have a full path e.g. /bob/fred; the group is just a name which is within the namespace of the
surrounding region. At the start of parsing EX files, the file’s root region “/” is active.)

Another approach is to specify the region on the read command “gfx read node/element/data region PATH”, but
bear in mind this will continue to create groups at the named path. This effectively maps the file’s root region to
the named region.

Warning: Be aware that there are still cases where you can’t use regions, so continued use of groups will be
necessary:

1. Whenever several element groups share common nodes. Elements can only reference nodes from the
same region.

14 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

2. Certain features such as the compose/find_mesh_location fields that do not work inter-region.

We certainly wish to remedy these in time. We need to hear user input about what functionality they need to
work between regions.

Possible breaks with the removal of group regions

1. Groups no longer have a rendition

Each region has a ‘rendition’ which is the set of graphics for visualising its fields. When groups were presented
as regions, they too had their own rendition. We now interpret existing commands in the form:

gfx modify g_element [REGION_PATH]/GROUP_NAME ...

as:

gfx modify g_element [REGION_PATH]/ ... subgroup GROUP_NAME

Hence the graphics now belong to the parent region. All graphics now have an optional subgroup field and when
supplied only shows primitives for which the field is non-zero. Hence the new group fields are all usable, but so is
any other scalar field expressions (e.g. less_than(mag(coordinates), 100.0). When you re-list graphics with “gfx
list g_element” you will see the new form. Note: this also replaces the “visibility_field” option on node_points
and data_points so you will need to rename this.

The “gfx modify g_element [REGION_PATH]/GROUP_NAME” command clears only graphics using the group
of the GROUP_NAME as the subgroup field. Beware that clearing the graphics of the parent region will also clear
those referencing any subgroup.

2. Groups no longer have a rendition, hence have no individual ‘default’ arguments

Cmgui 2.8 (the last public release) deprecated all arguments to the “general” command for modifying graphics
except for the clear command.

gfx modify g_element PATH general clear default_coordinate NAME element_discretization “#*#*...” ...

To keep old command files working, the options specified in the g_element command are stored and used as
defaults when new graphics are created. With the removal of group regions, these no longer have independent
defaults from each other and from the parent region. Continuing to rely on these defaults can produce spurious
results; Cmgui now warns whenever these defaults change.

Conclusion: always prefer to specify coordinate field, tessellation object etc. for each individual graphic. Never
use the general defaults: remove them from your command files.

3. Groups no longer have a rendition, hence no transformation

Each region rendition has a transformation attribute which transforms all graphics relative to the parent region
rendition, but groups no longer have either. There is no workaround here except to use a child region instead.
Please talk to Cmgui developers if you have particular needs here.

4. Can’t have a group and field of same name

Groups are now fields, and no two fields can have the same name. You will have to change the name of one of
them.

Workaround for particular commands

A number of commands inconsistently use the keyword region or group followed by a region path. Many of these
commands have been migrated to identity if the path is to a group and work with it as before, however, we haven’t
fixed the inconsistent keywords.

1. gfx create|modify dgroup|ngroup|egroup

4.1. Migration documentation for users of previous versions 15

ABI Software Book, Release 0.2-PMR@HARMONY

These all create or modify the new group fields but should otherwise work as before.

For egroup these now have an option to manage_subobjects which means when you add an element to the group,
all faces, lines and nodes are added to the related group. This is the default so as to reproduce previous behaviour,
but can also be turned off by specifying <no_manage_subobjects> (as managing subobjects is expensive and may
be unnecessary).

2. gfx define field integration|xi_texture_coordinates

Added option to specify mesh as cmiss_mesh_1d, cmiss_mesh_2d or cmiss_mesh_3d, or
group_name.cmiss_mesh_Nd for a subset of the mesh. Removed region option since node must be from
current region.

3. gfx define field nodal_lookup|quaternion_SLERP

Removed region option since node must be from current region. Added option to specify nodeset
cmiss_nodes|cmiss_data, so a node or data point can be used.

4. gfx list data|elements|faces|lines|nodes

Added conditional FIELD_NAME option. Use a group field as the conditional to list only objects in the group
(previously used region path).

5. gfx list dgroup|egroup|ngroup

Removed. Use gfx list data|elements|faces|lines|nodes conditional GROUP_NAME instead. See point 4.

6. gfx list g_element

A new feature! Omit the region to list commands for all region renditions with new default recursive option.
Default is now to list commands rather than the wordy description.

7. gfx list group

A new command: lists the groups in a region.

No default line graphics

Prior to this release, when you read in a model into cmgui, line graphics for all 1-D elements in any region under
the root region were automatically added. However, lines were not added to regions created empty which included
the root region itself. Particularly with the removal of ‘group regions’, there is no way that this behaviour can
be sensibly maintained. The automatic lines feature was about as annoying to some users as it was beneficial to
others.

Hence, we have removed this ‘feature’. Now, in order to see any model you read in, you must open the scene
editor and manually add any graphics. After you have created graphics you may need to click ‘View All’ in the
graphics window to ensure they are in view.

Some users’ command files will have been written assuming lines are automatically present; these now need to
be modified to explicitly add lines, e.g. using the ‘gfx modify g_element PATH_TO_REGION lines coordinate
NAME ...’. You can do this interactively by adding the lines in the scene editor and using this command to list all
commands to reproduce the graphics for all regions:

gfx list g_element

Another partial workaround is to add lines to the root region after your model has been read:

gfx modify g_element "/" lines coordinate coordinates;

(or whatever your coordinate field is called.)

Note: Alternative approaches to creating a default view of a model have been investigated but they are complex,
hence they haven’t been tried. However, we’d appreciate feedback and ideas from users in this area.

16 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Simplified creation of nodal derivatives

The specification of nodal derivatives and versions with commands:

gfx modify nodes|data ...

have been changed to match the derivative names and limitations of the external API, since this code has been
changed to test the external API internally. Users needing the removed functionality (different derivatives and
versions per component) should talk to the Cmgui developers.

Getting started with CMGUI

This section will introduce you to the capabilities of CMGUI, as well as how to install and begin using the software.

Where to go for help

There is a large collection of examples which can be used to learn about the capabilites and operation of CMGUI.

Issues with the software can be reported and discussed on the tracker, which is found at https://tracker.
physiomeproject.org.

What is CMGUI and what can it do?

CMGUI is an advanced 3D visualization open source software package with modelling capabilities. It originated
as part of CMISS, a collection of software for “Continuum Mechanics, Image processing, Signal processing and
System identification”. CMISS includes cm, a closed-source application for finite element method computation
and related computation. Historically CMGUI has been mostly used in conjunction with cm. OpenCMISS-Iron
(www.opencmiss.org) is an open source project, currently under development, aiming to replace the closed source
CMISS-cm.

A gallery demonstrating some of the uses of CMGUI is available.

Some of the main areas of functionality of CMGUI are as follows:

• 3D visualization of finite element and boundary element meshes

• Mesh creation

• Mathematical field visualization and manipulation

CMGUI is mainly controlled from its built in “command line” interpreter. Usually script files are read or com-
mands are typed in the CMGUI command window to read in your mesh, create a 3D visualisation and manipulate
it. Many tasks can also be accomplished by using the mouse to select options from various menus and dialogs.
CMGUI has a large amount of functionality but it can be difficult for a new user to figure out what command to
use to accomplish exactly what they want to do. Fortunately there are a large number of examples demonstrating
the use of various different commands.

CMGUI is also used as part of the Zinc extension to Mozilla Firefox. The Zinc extension allows users to view
Zinc applications and visualizations in Firefox. A Zinc application uses CMGUI for visualization while providing
a nice customized user interface for a specific task. For example Zinc applications have been written to do the
following:

• Interactively explore Colon endoscopy

• Explore the Physiome eye model

• Create data points to give a digital description of a geometry based on medical images.

Note that Zinc is compiled as a separate application from CMGUI. You do NOT have to install CMGUI to use
Zinc. For more information on Zinc see http://www.cmiss.org/CMGUI/zinc.

4.2. Getting started with CMGUI 17

http://cmiss.bioeng.auckland.ac.nz/development/examples/a/index_thumbs.html
https://tracker.physiomeproject.org
https://tracker.physiomeproject.org
http://cmiss.bioeng.auckland.ac.nz/development/examples/a/index_thumbs.html
http://www.cmiss.org/CMGUI/zinc

ABI Software Book, Release 0.2-PMR@HARMONY

Installation

CMGUI is currently available for download for a wide variety of platforms. You can download the appropriate
executable for your operating system from the release centre.

CMGUI is quite a large application so the executable has been archived (tarred) and compressed (zipped) to make
it faster to download. Once you have downloaded the executable all you need to do is untar and unzip it and it is
ready to run. On Linux you can untar and unzip the tar.gz file with the command:

tar -xf filename.tar.gz.

On Windows you will need 7Zip or something similar to unzip the file. You should now be able to run CMGUI by
either clicking on the executable or by changing into the directory it is located in and then typing ./ followed by
the name of the executable at the command prompt, eg. ./CMGUI-wx. This will bring up the CMGUI command
window interface.

For convenience it is a good idea to place the directory containing CMGUI into your PATH environmental variable.
That way you will be able to run CMGUI without having to be in the directory that contains the executable. To do
this on a Linux system you can specify your PATH variable in your .profile file. On Windows you can edit your
PATH variable by right clicking on my computer and then selecting: properties, advanced, environment variables.
Ask your local system administrator if you do not know how to edit the PATH variable for your operating system.

Introduction to CMGUI

CMGUI: The Windows

In order to become acquainted with the features of CMGUI, it is useful to run through some of the simple example
files provided. CMGUI is a command line driven program, and all of its features are available via a command
line interface - however, it also provides a more accessible GUI interface allowing many (but not all!) of these
commands to be executed via a more familiar graphical interface. The interface is broken up into a number of
windows that allow access to the different functions of the program. The first example will familiarise you with
the most commonly used windows.

The CMGUI examples with thumbnails can be obtained from the CMISS website at http://cmiss.bioeng.auckland.
ac.nz/development/examples/a/index_thumbs.html - These examples normally consist of a comfile and some other
data files for creating a mesh.

Example a1 - Graphical Element Groups - Viewing a Cube

Load CMGUI to begin the first example. The first window that will present itself when loading CMGUI is the
command window. This window has a selection of menus and three functional areas; a history area which shows
commands that have been executed, a command line where commands may be entered directly, and an output area
that shows the text output of any commands, including error and help messages.

In the file menu, select Open then Com file, then locate the example-a1.com file. This is a text file containing all
the commands used in this example, as well as useful comments on what the various commands are doing. You
will see the comfile window appear, displaying the file you have just loaded. All the lines that begin with a #
character are explanatory comments, the rest are commands. The comfile window has three buttons at the bottom
- the All button executes the entire comfile, while the Selected button will execute only selected portions. Close
closes the comfile. Individual commands from the comfile can be executed by double clicking on them - notice
that clicking to select a command in the comfile window makes that command appear in the command line panel
in the command window, and clicking again then executes it. It is important to note that the order the commands

18 Chapter 4. Cmgui user documentation

http://www.cmiss.org/ReleaseCenter/cmgui
http://www.7-zip.org/
http://cmiss.bioeng.auckland.ac.nz/development/examples/a/index_thumbs.html
http://cmiss.bioeng.auckland.ac.nz/development/examples/a/index_thumbs.html
http://cmiss.bioeng.auckland.ac.nz/development/examples/a/index_thumbs.html

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.1: The CMGUI main window

4.3. Introduction to CMGUI 19

ABI Software Book, Release 0.2-PMR@HARMONY

are executed in can be important, especially in later examples, so click on the commands in the order they appear
in the example comfile.

Double-click the first two commands in the comfile - a new window will appear, displaying a wireframe repre-
sentation of a cube. This is the graphics window. You can rotate, zoom and translate the view of the cube in
this window by holding down the left, right and middle mouse buttons respectively while moving the mouse in
the display area. Have a go at moving the cube around, and click the perspective button on and off to see the
difference it makes to the display. To reset the view, click the View All button.

Once you have run through all of the commands in this example (either by double-clicking them or by using
the All button in the comfile window) you should have a blue, somewhat shiny cube, a set of blue axes, and red
numbers at each corner of the cube. These are the numbers of the nodes, the points that make up the 3D model.
Another window will also have appeared, called the Node Viewer. This window allows you to manipulate the data
that define the nodes - in this case the corners of the cube. In the cube example, each node has a number and
coordinates. You can click on each of these buttons (at this stage a small GUI bug means you need to manually
resize the window after clicking) to show editable boxes containing the actual data contained in the nodes. This
window therefore allows direct access to the node data for editing. If you edit coordinate data and click the Apply
button, you will see changes in the shape of the cube in the graphics window.

Fig. 4.2: The CMGUI graphics window

Other Interface Windows: Editors

That is the end of the example file commands, but there are other windows you can now use to manipulate the cube
shown in the graphics window. Go into the Graphics menu in the Command Window, and select Material editor.
This brings up a window that allows you to create and edit materials, which define the appearance of objects
in the graphics window. You can manipulate the colour, specularity (shininess), emitted light (glow), and alpha
(transparency) of a material using this window. Your edited material is used to create the sphere in the preview

20 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

panel at the bottom of the window - you may need to resize the window in order to get a good sized preview panel.
Click on some of the already defined materials in the list at the top to see how they affect the preview sphere, then
play around with the sliders to alter the material.

Click on the material bluey - this is the material used to show the faces of the cube in this first example, as defined
in the comfile. Use the colour and property sliders to make it quite different; perhaps red and highly transparent,
then click Apply to change the cube in the graphics window to your new material.

Now close the material editor and go to the Graphics menu, selecting Scene editor. The scene editor allows you to
manipulate which objects appear in the graphics window, and how they are rendered. It also allows you to create
new objects, as well as change their order in the scene, which is particularly important when rendering transparent
objects. As a quick example of what can be done with this editor, select the lines setting in the settings list (shown
selected below), and un-tick the check box. The white lines along the edges of the cube will disappear in the
graphics window. Similarly, you can choose whether to show the cubes surfaces or the node numbers using the
appropriate check boxes. You will notice that as you select settings (such as surfaces) in the settings list, their
properties will appear in the settings editor below. Using this editor you can change a large number of the display
properties of objects in the scene. There are many more important functions to this editor window which will be
explained in more depth later.

CMGUI Architecture

Regions and Fields

The basic structural unit in CMGUI is called a region - region is a container for the objects representing a model.
Regions own a set of fields and may contain child regions, thereby allowing a hierarchical model structure. For
example, you may have a “body” region that contains “heart”, “lung”, and “stomach” regions.

When you start CMGUI, a root region exists; this is an empty space into which other regions are loaded. When
you load in exnode and exelem files, a new region will be created in the root region named for the group declared
in the files. For example, if you were to load in heart.exnode and heart.exelem files which declare a group “heart”
(via the line Group name: heart), a new region called “heart” would be created containing all the nodes,
elements and fields defined in these files.

Each region contains a set of fields from which a model is built up. A field is a function that returns values over
a domain; for example, the “potential” field could provide a value for the electrical potential of each point in the
heart domain, which could be a finite element mesh. The geometry of the heart is itself defined by the coordinate
field (this field is often called “coordinates” in our models). Finite element fields in CMGUI are generally defined
by storing discrete parameters at nodes (eg the coordinates of the node, the electrical potential at each node) and
interpolated across the 𝜉 space spanned by elements to give the continuous field.

Other examples of fields include fibre orientation in the heart, temperature, pressure, material properties, strain
and so on. In CMGUI you can also define fields that are computed from other fields. For example, you might
define a field called “scaled_coordinates” by scaling coordinates x, y, and z to x, y, and 10z, perhaps to exaggerate
the height of topological features. You might also compute strain from deformed and undeformed coordinates,
fibre axis from fibre Euler angles, and so on.

Other Data in CMGUI

The structure of the CMGUI command data (that is, the complete set of data used by CMGUI) is divided into a
number of containers and categories. Besides the regions which contain fields, there are also the following lists
and managers, which contain other data used to create visualizations:

• Scene manager - scenes contain definitions of how to display visualizations. The region created when you
load exnode and exelem data (such as the heart region described above) is used to automatically create a

4.4. CMGUI Architecture 21

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.3: The CMGUI graphical material editor window

22 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.4: The CMGUI scene editor window

4.4. CMGUI Architecture 23

ABI Software Book, Release 0.2-PMR@HARMONY

graphical representation in scene “default” when loaded. Scenes contains either (1) graphical renditions of
regions (2) graphics objects (3) child scenes.

• Graphical material manager - contains a list of graphical materials that can be applied to graphical repre-
sentations or objects.

• Texture manager - contains a list of textures that can be used in material definitions or volume renderings,
etc. Textures are 2D or 3D images.

• Spectrum manager - contains a list of spectra that can be used in material definitions. These control how the
graphical material is changed when graphics are coloured by a data field.

• Graphics object list - contains simple graphics objects which are not tied to a model representation, but can
be drawn in a scene. These can animate with time.

• Glyph list - contains glyphs that can be used to represent data points in the graphics window - such things
as spheres, cubes, arrows, axes, points or lines. Objects from the graphics objects list may be added to the
glyph list, in order to create customized glyphs.

CMGUI is not like most common software packages that can save a single file containing all of your work. In
CMGUI, the data being worked on is often loaded in as a number of separate files, and the editing of the visual
representation of this data often does not change it; it only alters how it is represented in the 3D window. Currently,
it is not possible to save your work in a single file that can be loaded in order to recreate all your work on the
representation. For example; if you load in a model, change the viewpoint, alter the materials used to render it,
and add glyphs to important data points, there is no way to simply “save” all of these changes in one file.

It is possible to save most of your work in CMGUI, using the menu item write all files. Go to the file menu, select
write and then all files. You will be prompted to give names for a com file, exdata file, exnode file, and an exelem
file. CMGUI will then prompt you for the name of a zip file to save all these separate files in. In this way it is
possible to take a fairly complete “snapshot” of your work in CMGUI. This feature is undergoing improvement to
make it more comprehensive.

CMGUI Command Window

This is the first window that appears when CMGUI is loaded. It consists of standard menus at the top, and three
panels below. From top to bottom these are the history, command line, and output panels. The history panel is
where all commands that have been executed are displayed. The second, single-line panel is the command line
where commands may be entered directly. The lowermost panel is the output panel; this displays the text output
of commands, error messages, as well as help information.

The history and output areas have scrollbars that allow you to view all of the contents of these panels. In the case
of the history panel, this enables you to scroll back and click on commands - clicking on a command in the history
panel will enter that command into the command line. This command can then be edited and executed. In the case
of lengthy commands, this can save a lot of typing. Double-clicking on a command in the history window will
execute it immediately.

The output panel is where any text output from commands or error messages appears. If something is not working
in CMGUI, this panel is the first place to look for a reason. This panel also displays the help information when
you execute a command with the ? or ?? argument.

Useful commands

To “save” a set of material settings:

gfx list material commands

Copy the resulting text and save it as a text file. You can use this to save any parts of the visualisation you have
created - simply type:

gfx list ?

24 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

To get a list of the objects that can be listed with this command.

CMGUI Fields

Fields in CMGUI: finite element models

CMGUI models are organized into regions, which may contain child regions, so that models can be organized into
hierarchies. The representation of the model within each region is given by fields. Much of the power of CMGUI
is in its generalized representation and manipulation of fields. Mathematically, a field is a function returning
values at locations within its domain. Most commonly the values are real numbers, though they may be scalars or
multi-component (vectors, tensors etc.).

Consider an object such as a solid cube over which a value like the temperature varies. We would represent this
in CMGUI as a field “temperature” which is a function of location in the cube. A cube is a very simple geometry
and it is easy to come up with a simple method to specify any location within it; for example the global x, y, z. But
real geometries are seldom simple so we follow the finite element method and divide them up into simple shapes
such as cubes, wedges, tetrahedra, etc. for 3D geometries; squares, triangles etc. for 2D geometries; lines for 1D
geometries, and other shapes in other dimensions.

These finite elements have a local coordinate system of limited span, which is called an element chart. In cmiss
we commonly use the greek character xi (𝜉) with subscript to denote each independent coordinate within an
element, hence we will commonly refer to the chart of a given element as its 𝜉 space. A 3-D cube element in
CMISS/CMGUI has a range of 0 to 1 in each 𝜉 direction, as shown in figure 1A.

Fig. 4.5: Figure 1: Coordinates and 𝜉 space of a 3D element. A) This shows the unit cube 𝜉 space, where each
dimension of the element ranges from 0-1. It is easy to imagine that the coordinates of this cube could also be
0-1 in the x, y, and z axes. B) The cube element in this picture has been distorted, such that its coordinates are no
longer 0-1 in the x, y, and z axes. Despite this, the element’s 𝜉 values are still 0-1 in each 𝜉 direction. This cube
has a “temperature” field that is rendered as a rainbow spectrum.

We must define a coordinate field over the domain in order to give it its true position in 3-dimensional space. This
applies even to the simple cube model: it can be treated as a unit cube in 𝜉 space, but the coordinate field allows
its real position to be transformed such that it is not aligned with the global coordinate system, and in fact can
be generally distorted as shown in the figure 1B, above. About the only thing special about a coordinate field is
that - provided it is of the same dimension as the element 𝜉 space - it is usually bijective with it - this means if
you have one you can find the other, eventually. (I say usually because the relation cannot generally be enforced:

4.6. CMGUI Fields 25

ABI Software Book, Release 0.2-PMR@HARMONY

it is possible for coordinates of parts of the mesh to penetrate other parts of the mesh, including within a single
element where the jacobian is zero or negative.)

A set of finite elements which make up a domain is called a mesh.

In CMGUI data structures we usually also define the faces of elements as separate elements of lower dimension,
and share faces between adjacent elements. The faces of 3D “top-level” elements are called face elements, the
faces of 2D elements are called line elements. The top-level elements, whether 3D or 2D (or nD) have unique
integer element identifiers in their region. Face and line elements also have unique identifiers within their own
type; in other words you can have element 1, face 1 and line 1 and they are not the same element.

The zero dimensional counterpart to elements and faces are called nodes. There is one set of nodes per region,
again with their own unique integer identifiers. Nodes can be considered as a set of points at which fields are
defined. When we define field functions over elements (finite element fields) we most commonly store explicit
values and derivatives of the field at nodes and interpolate them across the element. To define such fields each
element maintains a list of the nodes which contribute to fields in that element, called the local node list. The
number and arrangement of nodes depends very much on the basis function used to compute the field value. Linear
Lagrange and simplex basis functions are a simple, common case where nodes contain values of the field at the
corners of elements, and these are linearly interpolated in the 𝜉 space between. Figure 2 shows the arrangements
of faces, lines and nodes (for linear basis) for 3D and 2D elements.

Fig. 4.6: Figure 2: How nodes, lines and faces make up a mesh The simple cube mesh again; nodes (yellow),
elements (red), faces (green), and lines (blue) are numbered. A single cube element requires 8 nodes, 12 lines, and
6 faces.

26 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.7: Figure 3: Node, face and line sharing between connected elements In more complex meshes, con-
nected elements share nodes, lines and faces (shared nodes lines and faces are shown in red). In panel A, this
two-cube mesh has only 12 nodes; 4 of the nodes are shared by both elements. In panel B, an eight-cube mesh is
made up of only 27 nodes - many of the nodes are shared by more than one of the elements. The central node in
this example is shared by all 8 elements. Field values are continuous across these shared parts.

Getting back to the original statement of what a field is, we can generally state that a domain is a set of 0..N-
dimensional manifolds, i.e. there can be any number of manifolds of any dimension. In CMGUI finite element
meshes, nodes supply the point manifolds and elements supply all the higher dimensional manifolds. There is no
requirement for the domain to be connected. CMGUI fields are not limited to returning real numbers; there are
fields that can return integers, strings, element-𝜉 locations and other values.

Computed fields

We have now introduced the main building blocks of finite element fields which are just one type of field represen-
tation in CMGUI. In CMGUI we offer a large number of other field types which do not work directly with finite
element meshes, but may be based on finite element fields. Most of these are mathematical operators which act
on one or more source fields to produce a new field result.

A simple example is the add field which adds two other fields together to return a new field. The add field has two
source fields as arguments. If you made field C which added finite element field A to finite element field B, the
resulting field is defined over the intersection of the domains of field A and field B.

Other types of field

• Arithmetic and transcendental functions: Add, subtract, multiply, divide, sum_components, log, power,
square root, exp.

• Trigonometric functions: sin, cos, tan, asin, acos, atan, atan2.

• Derivative functions: Derivative, divergence, gradient, curl.

• Vector functions: Dot_product.

• Matrix functions: Matrix_multiply, matrix_invert, transpose, projection, eigenvalues, eigenvectors, quater-
nion_to_matrix, matrix_to_quaternion.

• Logical functions: Less_than, greater_than.

4.6. CMGUI Fields 27

http://en.wikipedia.org/wiki/Manifold

ABI Software Book, Release 0.2-PMR@HARMONY

• Conditional functions: If.

• Constant fields: Constant fields have a value which is independent of location within the domain. You may
also have a constant field that is constant (non-varying) across chosen dimension/s but varies across other
dimension/s.

• Composite field: Makes a new field built from other fields and field components in any order.

• Image-based fields: These can be used for texture-mapping and image processing. Image processing fields
using ITK filters.

• Many more.

These types of fields can be created via gfx define field commands or through the API. Fields are a
modular part of the CMGUI application. If a new function is required, it can be added as a field. To get a list of
the computed fields available in CMGUI, enter gfx define field ?? in the command line.

Fields and visualization

When creating visualizations, you need to choose which field controls which part of a graphics object. Coordinates
in one, two or three dimensions can be used to create spatial representations. Texture coordinate fields can be
used to position textures. Orientation or data fields can be used to position glyphs or colour objects such as
surfaces. CMGUI allows an enormous amount of flexibility in how fields can be visualized. Further information
on visualizations is available in other documents such as those detailing graphics, glyphs, or surfaces.

Visualizing fields at points using glyphs

Glyphs are graphical objects that are used to represent information at points within a model. These glyphs can
be coloured, scaled, and oriented according to the values of chosen fields. Glyphs might be used for something
as simple as showing node locations (Figure 1), or something more complex such as showing the strain at points
within a deformed mesh. cmgui has a range of glyphs available, for representing different types of point data.
This document will explain how to position, scale and orient glyphs in a variety of ways.

Adding glyphs to a mesh

Glyphs are added and edited from within the scene editor. When you select a region in the scene editor, you can
create a new graphic for placing glyphs at your points of interest. Glyphs can be added at point, node points, data
points, or element points. Element points are points through the interior of an element at a controllable layout and
density.

Unscaled glyphs

The simplest use of a glyph is to visually mark a point, with no direction or scale information. Unscaled glyphs
are simply glyphs for which you have not selected an orientation/scale field. This means that they simply appear
at the points you specify, at the default orientation, and with the specified the base size. The default base size is
1*1*1. If you want to run through this example, load up example a1 in cmgui and run the entire com file.

Open the scene editor and make sure cube is selected in the scene object list. You will notice that there are three
items in the graphics list: lines, node_points, and surfaces. Select the node_points graphics item. You will see
in the settings below that these node_points already have glyphs associated with them - in the Glyph drop-down
menu, the glyphs currently used to display the nodes are point glyphs. These are the default glyph, and are by
default a single white pixel. Figure 2 shows the scene editor window, with the three areas labelled.

Use the drop-down menu to select another type of glyph for the node points: select sphere. In the graphics window,
large orange spheres will appear at the corners (node points) of the cube. As the cube in this example is 1*1*1 and
the default size of the glyphs is also 1*1*1, the glyphs will be far too large to be useful. For unscaled glyphs, you
control the size by entering your desired size in the Base glyph size text-box, which will currently contain 1*1*1

28 Chapter 4. Cmgui user documentation

http://cmiss.bioeng.auckland.ac.nz/development/examples/a/a1/index.html

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.8: Figure 1: Different glyphs placed at the nodes of a cube mesh.

(x*y*z dimensions). Change this to 0.1*0.1*0.1. If you enter a single value in the base glyph size box, it will use
this value for all three dimensions. After changing the glyphs to these dimensions, you will notice that the spheres
have shrunk to a more practical size (Figure 3). For unscaled glyphs, the final size is determined entirely by the
Base glyph size.

Final glyph size = b1*b2*b3

This is the most basic use of glyphs - to indicate points such as nodes. Other uses of glyphs allow you to represent
data in addition to simple location by using the size, shape, and colour of glyphs.

Scalar glyphs

Scalar glyphs can be used to represent the value of a scalar field at selected points. They have a single component
orientation/scale field, which we will call S. For this case the value of S is used for all three directions of glyph
scaling. The size of each glyph dimension (x, y, and z) is determined by the base size (which we will call b) plus
the scale factor (which we will call c) multiplied by the orientation/scale field.

Any scale factors that are given a zero value do not add anything to the base size - in this way it is possible to
scale glyphs in one, two, or three dimensions simply by using a zero value for the dimensions along which you
do not wish them to scale. For example, for glyphs that only scale in the z direction, c1, c2, and c3 could be 0, 0,
and 0.1 respectively. It can also be useful to set the base size to zero in order that the final glyph size is exactly
proportional to the orientation/scale field.

Vector glyphs

Glyphs used to represent a single vector most often use a three component orientation/scale field, but it is possible
to use a two component field for two-dimensional vectors. The alignment of the glyph is determined by the
alignment of the vector defined by the field; the glyph’s first direction aligns to the vector, and its second and third
directions are arbitrarily aligned orthogonal to this.

4.7. Visualizing fields at points using glyphs 29

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.9: Figure 2: The scene editor.

30 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.10: Figure 3: Changing the glyph and its base size.

4.7. Visualizing fields at points using glyphs 31

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.11: Figure 4: How glyphs are scaled by a scalar orientation/scale field.

The glyph scaling is proportional to the magnitude of the vector, which we will call M. All three directions of the
glyph are scaled by this value.

Final glyph size = (b1+c1M)*(b2+c2M)*(b3+c3M)

In most cases, b1 (base size one) is set to zero so that the final length of the glyphs is directly proportional to M;
that is, their size in direction one is entirely determined by the scaling factor c1 multiplied by the magnitude M.
Likewise, c2 and c3 can be set to zero so that the width and height of the glyphs are constant; in this case b2 and
b3 would be set to the desired constant sizes in these directions.

Two vector glyphs

These are rarely used. They have either four (2D vectors) or six (3D vectors) component orientation/scale fields.
Vector 1 is defined by the first 2 or 3 components, and vector 2 by the second 2 or 3 components. The glyphs
will orient their first direction along vector 1, and their second direction along vector 2. The glyph’s direction 3
direction 3 is equal to the cross product of vectors 1 and 2.

The glyph scaling is proportional to the magnitude of vector 1 (M1) in direction 1, the magnitude of vector 2 (M2)
in direction 2, and the cross product of vectors 1 and 2 in direction 3. For two 2D vectors, cmgui assumes a z
value of 0 in order to obtain the cross product.

M1 = magnitude of vector 1 M2 = magnitude of vector 2 M3 = magnitude of cross product of vectors 1 and 2

Final glyph size = (b1+c1M1)*(b2+c2M2)*(b3+c3M3)

Three vector glyphs

Three vector glyphs use a nine component orientation/scale field: vector 1 is defined by components 1,2,3, vector
2 by components 4,5,6, and vector 3 by components 7,8,9. The glyph is oriented in directions 1, 2, and 3 by the
directions of vectors 1, 2, and 3 respectively. The scaling along the three directions is determined by the magnitude
of the three vectors.

Final glyph size = (b1+c1M1)*(b2+c2M2)*(b3+c3M3)

Using the fibre field

A special case of three vector glyphs is when you choose a fibre field for the scale/orientation field. This option
automatically creates a three vector “fibre axes” field from it together with the coordinate field used by that graphic.

32 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

This is equivalent to defining a field using the command gfx define field NAME fibre_axes

Variable scale glyphs

Variable scale glyphs use an extra “variable scale” field to give a signed magnitude; this not only multiplies the
magnitude of the orientation_scale field (so it is doubly-scaled) but its magnitude provides its “sense”. A good
example of this would be extension (positive) versus compression (negative) for strain. Negative values of the
variable scale field reverse glyphs about their origin along their orientation. There are several special “mirror”
glyphs designed specifically for this purpose.

Fig. 4.12: Figure 5: Mirror glyphs and glyph reversal using the variable scale field. A) Mirror-cone glyphs
being used in the large strain example, with the magnitude and sign of strain indicated by the length and direction
of the glyphs respectively. B) How glyphs are represented with differently signed variable scale fields. Un-
mirrored glyphs are not as useful for representing this information.

Variable scale glyphs need both:

• direction: orientation_scale field

• magnitude: variable_scale field

The variable scale field is an extra scaling factor in addition to the magnitude of the vector. For the final glyph size
equation I will call the variable scale field “lambda” - this is because the variable scale field is often the eigenvalue
of an eignevector calculated from deformations. Run through the large_strain example (a/large_strain) to see this
in action.

Final glyph size = (b1+c1M*lambda1)*(b2+c2M*lambda2)*(b3+c3M*lambda3)

It is most common to use a variable scale field with single vector glyphs, such as in the large strain example.

Additional tricks with glyphs

Adjusting the glyph offset

All glyphs have a default origin; this is the point which is positioned at the chosen point within the graphical
representation. This can be edited by entering values in the offset value box in the settings editor. This appears
next to the glyph drop-down menu.

By default, glyphs have a 0,0,0 coordinate point (origin) that is logically positioned according to the purpose of
the glyph. For directional glyphs, the “long axis” is always the x axis. Spheres, cubes and cylinders have their

4.7. Visualizing fields at points using glyphs 33

http://cmiss.bioeng.auckland.ac.nz/development/examples/a/large_strain/index.html

ABI Software Book, Release 0.2-PMR@HARMONY

origin positioned in the spatial centre of a bounding unit cube. Directional glyphs such as arrows have their origin
at the base of the arrow, and axis glyphs have their origin at the intersection of the axes.

Fig. 4.13: Figure 6: Origins of various glyph types within their bounding cubes. Origin of each glyph family
is indicated by a red dot.

Using the offset value box, you can adjust the position of your selected glyph.

Using custom glyphs

It is possible in cmgui to create your own glyphs from obj model files. An example of this in action is the biplane
example, where a model of a biplane is used to create a custom glyph.

Graphics in CMGUI

General description of graphics

graphics are the building blocks used to create any visualization displayed in the CMGUI graphics window. They
are created, edited, re-ordered and deleted from within the scene editor, or via the command line. Most graphics
have the following settings in common:

• Name: This allows you to set the name of the graphic.

• Coordinate System: This setting can be used to render the graphic according to a range of different coordi-
nate systems. This is useful for creating “static” overlays of data on visualizations.

• Coordinate field: This setting has a drop-down menu showing a list of fields that can be selected as the
coordinate field for the selected graphic.

• Tessellation: Tessellation settings are used to set the level of detail of an object. This replaces the discretiza-
tion settings from old versions of cmgui.

Note: The only graphics which do not have a tessellation setting are node points, data points, and point.

• Select mode: This drop-down menu allows you to select different selection behaviours for the graphic:

– select_on - The default setting; graphics are able to be selected and selected items are highlighted by
rendering in the default_selected material.

– no_select - No selection or highlighting of the graphic.

– draw_selected - only selected items are drawn.

– draw_unselected - only unselected items are drawn.

34 Chapter 4. Cmgui user documentation

http://cmiss.bioeng.auckland.ac.nz/development/examples/a/biplane/index.html

ABI Software Book, Release 0.2-PMR@HARMONY

• Material: This drop-down menu allows you to select which material should be used to render the graphic.
Materials are defined and edited in the material editor window.

• Data: This setting has a drop-down menu, allowing you to select which field will be mapped on to the
graphic. This enables you to colour the graphic according to the values of some field, for example. The
check box also activates the spectrum drop-down menu.

• Spectrum: This drop-down menu is used to select which spectrum is to be used to colour the graphical
element according to the field selected in the data setting. Spectra are edited in the spectrum-editor-window.

• Selected material: This drop-down menu allows you to set which material will be used to render parts of
the graphic which are selected.

The eight types of graphics

• node_points

Node points are used to visualize nodes. You can use glyphs to represent node points. There are a range of
built-in glyphs in CMGUI, and it is possible to create custom glyphs as well. Node points graphics have the
following settings in addition to the common ones listed above:

– Glyph: this drop-down menu allows you to choose the glyph that will be rendered at the node points.

– Offset: this box allows you to offset the origin of the glyph in order to alter its placement with respect
to the node point.

– Base glyph size: This box allows you to enter a size (x,y,z) for the glyph in the same scale as the
coordinate system for the region.

– Orientation/Scale: This check box enables a drop-down menu that allows selection of the field that the
glyphs will be oriented and scaled according to.

– Scale factors: This box allows you to enter how each dimension scales according to the orienta-
tion/scale field value.

– Variable scale: This check box enables a drop-down menu that allows selection of the field that acts
as the variable scale field. For more information on this and other of the node points options, see the
document on working with glyphs.

– Label: use this drop-down menu allows you to add field-value labels to the glyphs.

• data_points

Data points are used to visualize data points. Like node points, they can be represented using glyphs. They
have the same settings as node points.

• lines

Lines are used to visualize 1D elements, or the edges of 2D or 3D elements. They are simple, unshaded
lines that have a fixed, specified width. They have the following specific settings:

– Exterior: This check box will automatically only render lines on exterior surfaces of a mesh.

– Face: This check box enables a drop-down menu that allows you to choose which faces are drawn
according to xi values. You can select xi=0 or 1 for each of the three xi-directions.

– Width: this allows you to specify the width of the lines in pixels. This is a constant width that does
not scale according to the zoom level.

• cylinders

Cylinders are used to visualize the same things as lines. They are shaded cylinders of a specified radius.
They have the following specific settings:

– Exterior: This check box will automatically only render lines on exterior surfaces of a mesh.

– Face: This check box enables a drop-down menu that allows you to choose which faces are drawn
according to xi values. You can select xi=0 or 1 for each of the three xi-axes.

4.8. Graphics in CMGUI 35

ABI Software Book, Release 0.2-PMR@HARMONY

– Constant radius: This allows you to set the radius of the cylinders, in the units of the coordinate system.

– Scalar radius: This check box will activate a drop-down menu allowing you to select which field will
be used to scale the radius of the cylinders. It will also activate a text box in which you can enter the
scale factor, or how the scale field will scale the radius.

– Circle discretization: This sets the number of sides used to render the cylinders in the 3D window.

– Texture coordinates: This drop-down menu allows you to select which field will be used to position
any textures applied by the material setting.

• surfaces

Surfaces are used to visualize 2D elements or the faces of 3D elements. They are shaded surfaces of zero
thickness that are automatically shaped according to the nodes defining the element they represent. Their
level of detail is specified per surface by choosing a tessellation object. They have the following specific
settings:

– Exterior: This check box will automatically only render surfaces on exterior surfaces of a mesh.

– Face: This check box enables a drop-down menu that allows you to choose which faces are drawn
according to xi values. You can select xi=0 or 1 for each of the three xi-axes.

– Render type: This drop down menu allows you to select shaded (default) or wireframe rendering
of surfaces. Wireframe rendering renders the surfaces as grids of shaded lines, with the grid detail
determined by the tessellation setting.

– Texture coordinates: This drop-down menu allows you to select which field will be used to position
any textures applied by the material setting.

• iso_surfaces

Iso-surfaces are used to represent a surface that connects all points that share some common value. For
example, in example a7 an iso-surface is used to represent a surface at which every point has a temperature
of 100 degrees C. They have the following specific settings:

– Use element type: This drop down menu allows you to select which type of element will have surfaces
rendered on it. Type use_elements is the default. The types use_faces and use_lines will render element
points only on those components of elements. If faces or lines are chosen, the following options are
activated:

* Exterior: This check box will automatically only render iso-surfaces on exterior surfaces of a
mesh.

* Face: This check box enables a drop-down menu that allows you to choose on which faces iso-
surfaces are drawn, according to xi values. You can select xi=0 or 1 for each of the three xi-axes.

It is worth noting that if you select use_surfaces then the equivalent of iso-surfaces becomes iso-lines. If
you select use_lines then you will not get any visual representation.

– Iso-scalar: This drop down menu allows you to select the field that the iso-surface will be rendered
according to the values of.

– Iso-values: This settings box contains the following settings:

* List: This radio button activates a text box that allows you to enter a value at which to draw the
iso-surface.

* Sequence: This radio button activates three text boxes that allow you to enter a sequence of evenly
spaced values to draw iso-surfaces at. The Number box allows you to enter the number of iso-
surfaces you want. The First and Last boxes allow you to enter the starting and ending values
of the iso-surfaces. The sequence will automatically space the number of surfaces between these
two values.

– Render type: This drop down menu allows you to select shaded (default) or wireframe rendering
of surfaces. Wireframe rendering renders the surfaces as grids of shaded lines, with the grid detail
determined by the chosen tessellation object.

36 Chapter 4. Cmgui user documentation

http://cmiss.bioeng.auckland.ac.nz/development/examples/a/a7/index.html

ABI Software Book, Release 0.2-PMR@HARMONY

– Texture coordinates: This drop-down menu allows you to select which field will be used to position
any textures applied by the material setting.

• element_points

Element points are used to visualize the discretized points within an element. Elements may be 1, 2 or 3
dimensional, in which case the element points are spaced along the line, across the surface, or throughout
the volume according to the chosen tessellation object . They have the following specific settings:

– Use element type: This drop down menu allows you to select which type of element will have element
points rendered on/in it. Type use_elements is the default, and renders element points throughout 3D
elements. The types use_faces and use_lines will render element points only on those components of
elements. If faces or lines are chosen, the following options are activated:

* Exterior: This check box will automatically only render element points on exterior surfaces of a
mesh.

* Face: This check box enables a drop-down menu that allows you to choose on which faces element
points are drawn according to xi values. You can select xi=0 or 1 for each of the three xi-axes.

– Xi discretization mode: this drop down menu allows you to select the method by which element points
are distributed across the element.

–

• streamlines

Streamlines are a special graphic for visualizing vector fields - for example, a fluid flow solution. They
can be used to visualize 3, 6 or 9 component vector fields within a 3 dimensional element. In example ao,
streamlines are used to show the fibre and sheet directions in the heart. Streamlines will align along their
length according to the first vector of a vector field, and across their “width” (eg the width of the ribbon or
rectangle streamline types) to the second vector. For single vector (3 component) vector fields, the width of
the streamlines will align to the curl of the vector.

Note that streamlines can be quite expensive to compute; changes to streamline settings in the scene editor
can take several seconds to appear in the 3D window, especially for complex scenes.

Streamlines have the following specific settings:

– Streamline type: This drop-down box allows you to select the shape of the streamlines; that is, the
shape outline that is extruded along the length of the streamline. Line and Cylinder can be used
to visualize streamlines without showing orientation (curl). Ellipse, rectangle and ribbon types will
enable visualization of the direction of the vector orthogonal to the streamline direction.

– Length: Enter a value into this box to set the length of the streamline/s.

– Width: Enter a value into this box to set the width of the streamline/s.

– Stream vector: This drop-down box allows you to select the vector that is being visualized by the
streamlines.

– Seed element: This setting has a check box which when ticked allows you to specify a single element
to seed a streamline from.

– Xi discretization mode: This drop-down box allows you to set the point in xi-space from which stream-
lines are seeded. The setting of exact_xi for example will always seed the streamline at the exact centre
of the element’s xi-space.

– Reverse: Checking this box reverses the streamline.

– Seed element: Checking this box allows you to select the single element number from which the
streamline will be seeded.

– Xi: Entering three comma-separated values (between 0 and 1) allows you to set the xi location within
elements from which streamlines will be seeded.

• point

4.8. Graphics in CMGUI 37

http://cmiss.bioeng.auckland.ac.nz/development/examples/a/ao/index.html
http://www.math.umn.edu/~nykamp/m2374/readings/divcurl/

ABI Software Book, Release 0.2-PMR@HARMONY

Point graphics are used to add a single glyph to the scene. This is the graphical setting that is used to replace
the old axis creation, for example.

CMGUI Graphics Window

The graphics window is where all visualizations set up in the scene editor window are displayed. It also has tools
which allow some interactive manipulation of the data being visualized. The window consists of a control panel
on the left hand side, and the display area on the left. At the top of the control panel area are a selection of general
controls under the “Options” label: view all, save as, and perspective. The view all button will zoom out the
viewing area so that all the graphics are visible. The save as option provides the ability to save the viewing area
as a raster graphic, such as a png or jpg file. The perspective check box switches convergence on or off in the 3D
display.

Immediately underneath the options section are controls for selecting how the 3D display is configured. The
Layout drop down list contains a list of display layouts, such as orthogonal or pseudo-3D views. If an applicable
layout is selected, the up and front controls will become available in order to change the viewpoint. Many of
these layouts contain multiple scene viewers, which may be useful in specific situations. The default layout simple
consists of a single 3D scene viewer.

Below the layout section is a button labelled “Time Editor”. This opens the timeline controls (much like the
controls in a media player) that allow you to play animations if they have been set up.

Below this are the 5 “Tools” buttons. These offer different ways of interacting with the 3D display.

The graphics window tools

• Transformation mode

This is the default mode, and is used for simple viewing of the graphical representations you are working
on. In this mode the objects in the 3D window can be rotated, translated and zoomed using the mouse.
Holding the left mouse button within the 3D view and moving it around will rotate, or tumble the view.
Holding down the right mouse button and moving the mouse up and down will zoom the view in and out,
and holding the middle button will allow you to translate the view around along two axes. It is useful to
spend some time getting used to the way these manipulations work.

In CMGUI, the rotate function works slightly differently from how similar view manipulations work in most
software. This may not be immediately obvious, as the function does not “feel” particularly different in use;
nevertheless there are some useful features of CMGUI’s particular technique for rotating the view.

Essentially, where you initially click in the view is the “handle” that you then move around by moving the
mouse. In CMGUI this handle is different to most applications, in that it is like “grabbing” a point on a
sphere that bounds the object in the 3D window. This allows manipulations using the rotate function that
are not possible in most 3D views, such as rotating the object around an arbitrary axis, or rotating it in a
circular fashion around the centre of the view. These abilities can be useful when looking at data that has
aligned features.

The four other tools available are used for the selection and limited editing of the type of item they refer to.
Selected items are able to be targeted by commands input to the command line, or edited from within the
graphics window.

When any of the following four tools is selected, holding down the Ctrl key will temporarily switch you
back into transformation mode in order to manipulate the view.

• Node Tool

The node tool allows the selection and editing of individual nodes from within the graphics window. Se-
lected nodes will turn red by default - the selected colour of a node is editable via the scene editor window.
There are a range of other options to allow the editing, (moving nodes within the scene viewer) deletion, or
creation of nodes. It is also possible to create 1D, 2D or even 3D (lines, surfaces and volumes) elements
using the node tool; this functionality is somewhat experimental and is of limited use in most cases.

38 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

NOTE: It is somewhat easier to edit nodes (or indeed any of the other editable items) when they are repre-
sented by an easily clickable glyph such as a sphere or cube, rather than a point.

• Data Tool

The data tool allows you to select data points and edit them in the same ways that nodes are editable, with
the exception of element creation/destruction which is only available in the node tool.

• Element Tool

The element tool allows you to select and destroy elements. You can also set up filters that allow only the
selection of line, face or volume elements. It is worth noting that volume elements have no indication of
their selection unless they contain element points, which will turn red when the volume element they exist
in is selected.

• Element Point Tool

The element point tool allows the selection of element points within the scene viewer/s.

All of the tools that allow selection are useful for creating groups via the command line. You can add selected
items to a group using the commands

Visualizing element fields using iso-surfaces

Iso-surfaces are graphical representations used to visualize 3D or 2D objects that connect every point where the
value of a certain field is the same. This idea is analogous to the contour lines on a map, where a line connects
every point of a certain height. In 3D this means that a surface connects every point of a certain value. An
example of this is in example a7 where an iso-surface is used to show the surface where every point is at 100
degrees Celsius. For a simpler example, example a2 shows the creation of an iso-surface at x=0.5 within the
simple cube mesh.

As with surfaces, the detail level of iso-surfaces is determined by the selected tessellation setting in settings editor
area of the scene editor (Figure 2). Iso-surfaces are drawn to connect points on the edges of the sub-element
divisions where the iso-scalar matches the chosen value. With an tessellation setting of 1, an iso-surface will only
connect points on the line edges of the element.

Visualizing element fields using lines and cylinders

Lines and cylinders are graphical representations which can be used to visualize 1-D elements in CMGUI - line
elements at the edges of 2-D faces or 3-D elements. In general, lines or cylinders are used to visualize the basic
shape of a mesh. When you load a mesh (exnode and exelem files) into CMGUI, the mesh is by default represented
by lines of the default colour and thickness: white lines 1 pixel thick. This means that a lines graphic is created in
the default scene (see the scene editor), with the default settings (Figure 1).

If you wish to create these lines in the graphics window, use the go to the file menu in CMGUI and select Read,
then Node file. Read in cube.exnode from the example a2 directory. Then using the Read and Elements file
menu options, read in cube.exelem from the same directory. If you now create a graphics window (using the
Graphics menu item 3-D window) you will see this cube rendered in 1 pixel thick white lines.

4.10. Visualizing element fields using iso-surfaces 39

http://cmiss.bioeng.auckland.ac.nz/development/examples/a/a7/index.html
http://cmiss.bioeng.auckland.ac.nz/development/examples/a/a2/index.html

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.14: Figure 2: How tessellation affects iso-surface detail: The tessellation setting of the iso-surface sets
the number of divisions in each xi direction within each element. Here, an iso-surface is used to connect every
point within the element cube where “temperature” is 20. The “temperature” field is shown on the surface of
the element cube using a spectrum in panel A. In B, the iso-surface is shown in wireframe (green) and a single
face of the cube is divided up according to the tessellation setting. You can see that the iso-surface links the
discretization divisions at points where the iso-scalar is at the chosen value. These intersections are indicated by
yellow circles. Panel C shows how different tessellation settings affect this iso-surface; settings of 2, 3, 4, and 8
minimum divisions are shown.

40 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.15: Figure 1: The default graphical setting lines created for a cube mesh. This mesh was created by
reading the cube.exnode and cube.exelem files from example a2. Note that the example a2 com file creates
cylinders to visualize the cube mesh.

Settings for lines

Two default scene settings are important for lines and cylinders. In the scene editor, the selected tessellation
controls the number of line segments used to draw each line. The Circle discretization value is used to control
how many sides are used to draw each cylinder. Higher numbers will give “rounder” looking cylinders (Figure 2).

Lines have relatively few settings for altering their appearance (Figure 2). The following settings are available for
lines:

• Coordinate field: When you check this box, you are able to select the coordinate field that the lines are
drawn according to. This is used any time the coordinate field used for the lines needs to differ from the
default coordinate field used for the whole graphical element (in the general settings).

• Exterior: When this check box is selected, the lines will only be drawn on the exterior faces of a 3D mesh,
or the outside edges of a 2D mesh. This can be useful with large, complex meshes.

• Face: Checking this box allows you to select which face of 3D elements is visualized by lines. Faces are
selected according to one of the 3 xi directions of the element, and it’s value (either 0 or 1).

• Select mode: This drop-down menu allows you to select different selection behaviours for the lines.

– select_on - The default setting; line elements are able to be selected and selected elements are high-
lighted by rendering in the selected material.

– no_select - No selection or highlighting of line elements.

– draw_selected - only selected lines are drawn.

– draw_unselected - only unselected lines are drawn.

• Material: This drop down menu allows you to select which material the lines will be rendered as. Materials
are defined in the material editor window. Note: the material for lines is unshaded. This means that lines
only use the diffuse colour for the selected material to draw the lines.

• Width: You can enter a value in this box to set the thickness of the lines in pixels. This width is independent
of zoom, and remains constant through any transformation. Setting this value to 0 results in lines of 1 pixel

4.11. Visualizing element fields using lines and cylinders 41

http://cmiss.bioeng.auckland.ac.nz/development/examples/a/a2/index.html
http://cmiss.bioeng.auckland.ac.nz/development/examples/a/a2/index.html

ABI Software Book, Release 0.2-PMR@HARMONY

wide (the default).

• Data: This setting allows you to choose a field which is used to colour the lines according to a spectrum.
Use the Spectrum drop-down menu to choose from one of the spectra defined in the spectrum editor window.

• Selected material: Use this drop-down menu to select which material will be used to render selected lines.

In addition to these settings there is a command line setting that can be very useful when using line based visu-
alizations: gfx modify window 1 set perturb_lines. This command helps to prevent the “dotted
lines” effect that occurs when lines and surfaces interfere.

Note: if no lines appear, you may not have added faces (and lines) to the mesh - try the gfx define faces
command.

Fig. 4.16: Figure 2: The scene editor settings available for a lines graphical setting.

Settings for cylinders

Cylinders are very similar to lines, with a few additional parameters. A cylinders graphical setting will draw
cylinders along all the same elements that a lines graphical setting would. Cylinders are different to lines in that
they have a size relative to the mesh - therefore they scale with zooming just like other objects that have an actual
“size” in the scene. The number of “faces” that are used to display cylinders is set under the General settings
under Circle dicretization. The higher the number, the more circular the cylinders will appear. The default setting
is for six sides. Cylinders have the following settings in addition to those for lines:

42 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

• Constant radius: This is the radius of the cylinders, in the same units as the coordinate system.

• Scalar radius: This drop-down menu allows you to select a field to scale the radius of the cylinders. A
good example of this is shown in example a4.

• Scale factors This box allows you to enter three values as factors for the scaling in three dimensions. It is
possible using this to exaggerate or reduce the scaling, or to restrict scaling to one or two dimensions.

CMGUI Material Editor Window

The material editor window is where you define materials to be applied to graphical elements or objects in the
graphics window. Along the top of the material editor window are three buttons; create, delete and rename. You
can create a new material, delete or rename an existing material using these buttons. Below these buttons is the
list of currently defined materials. These will contain the default materials, as well as any defined in any comfile
that has been run.

Below the material list is a panel containing four colour editors. These control the ambient, diffuse, emitted and
specular colours.

• Ambient - The ambient colour is the “unlit” colour, or the colour of parts of the object that are in shadow.

• Diffuse - This is the overall colour of the material, the colour that the lit parts of the object will appear.

• Emitted - The emitted colour is the “glow” of a material; this colour will appear in both the lit and unlit
parts of the material.

• Specular - This is the colour of the shine that appears on the material. This shine appears as a glossy
highlight.

Each colour can be edited using three sliders or textboxes, and you can choose from three colourspaces for editing
the colour. The default is RGB, but the HSV and CMY colourspaces are also available from a drop-down menu
at the top of each colour editor. Each colour editor has a preview panel showing a flat sample of the colour that is
being edited.

Below the colour editors is the surface editor. This panel allows you to set the alpha, shininess, and texture
properties of the surface of the material being edited. The alpha value sets the transparency of the material. The
shininess sets the “tightness” or size of the specular highlights of a material; generally the higher the shininess,
the smaller and harder-edged the highlights. Higher shininess makes a material look glossier. The surface editor
also allows you to assign a texture to the material surface - this option is unavailable unless you have created at
least one texture by using the gfx create texture command to read in some bitmapped graphics. There
are two other check box options available in the surface editor: “per pixel shading” which greatly increases the
quality of the lighting of the material, and bump mapping which allows you to use a texture file to create surface
details. These options are only available on hardware that supports advanced forms of shading.

Below the surface editor is a panel that shows a preview of the currently edited material applied to a sphere. You
may need to resize the material editor window in order to see a usefully large preview panel. Clicking in the
preview panel will cycle the background from the RGB colours through black, white and back to RGB.

At the bottom of the window are four buttons: OK, apply, revert and cancel. The OK button leaves the editor and
applies the changes made. The apply button immediately applies current changes to the materials, allowing you
to see how they look if they are used in any objects shown in the graphics window. The revert button will undo
any changes made to the currently edited material, and the cancel button exits the material editor window without
applying changes.

CMGUI Scene Editor Window

The scene editor is used to control how visualizations appear in the graphics window. From this window you can:

• Toggle visibility for any part of the region tree.

• Toggle visibility of any individual graphics setting for a region.

4.12. CMGUI Material Editor Window 43

http://cmiss.bioeng.auckland.ac.nz/development/examples/a/a4/index.html

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.17: Figure 1: The CMGUI Material Editor

44 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

• Add, remove, and edit graphics.

• Alter the order in which graphics are drawn.

The window itself is broken into four main areas; region tree, transformation controls, graphics list, and settings
editor (Figure 1).

Fig. 4.18: Figure 1: The scene editor.

Region tree

At the left hand side of the Scene Editor window is the region tree, where all regions are listed. Each region
has a visibility toggle, controlled by clicking on the box alongside its name. All ticked regions will be visible in
the graphics window, provided that they have some visible graphics. Regions may contain sub-regions, allowing
powerful control over visibility of the parts of a complex model.

Alongside the region tree are the transformation settings, graphics list, and settings editor. These are used to
control and edit the visualisations of the currently selected region in the region tree.

4.13. CMGUI Scene Editor Window 45

ABI Software Book, Release 0.2-PMR@HARMONY

Note: Previous versions of cmgui also had a “General Settings” section in this window, which was used to set
the level of detail (discretization) of objects. This system has been replaced by the new tessellation object. You
are now able to use different levels of detail for different graphics, allowing you to choose the most appropriate
for each. This also allows you to change the detail levels of a number of graphics by simply altering a single
tessellation object that has been applied to them all. The tessellation is set for each graphical setting using the
settings editor.

Graphics list

Below the transformation and general settings buttons is the graphics list. This is where the visual representations
of the currently selected region are listed. This panel allows creation, deletion, visibility switching (on or off) and
re-ordering of these visual representations.

Settings editor

Below the graphics list is the settings editor where each graphical setting can be edited. When a graphical setting
is selected from the list, all of its editable properties appear in this area. The range of editable properties will vary
depending on the type of graphics currently selected.

CMGUI Spectrum Editor Window

The spectrum editor window is where you define spectra to be applied to graphical elements or objects in the
graphics window. Spectra are used to visualize continuous data ranges within models using colour ranges, and
can be applied to the graphics that have been used to create your visualization. The window is divided into three
basic areas; the spectrum list, the preview panel, and the settings editor (Figure 1).

It is useful to step through example a7 to get a feel for the use of spectra in cmgui. This example uses a mesh
containing a number of fields that can be usefully visualized using spectra.

Spectrum List

The spectrum list shows all the currently defined spectra; it will always contain the default spectrum if no others
have been defined. Three buttons at the top of the window allow you to create, delete, or rename spectra. Just
below the list of spectra are some controls that allow you to set some of the general properties of the selected
spectrum. The autorange button automatically sets the minimum and maximum values of the selected spectrum,
according to the smallest and largest values it has been applied to in the scene editor. For example, if the default
spectrum has been used to colour a temperature field in the default scene, and that field has values ranging from 0
to 100 degrees Celsius, pressing the autorange button will set the minimum and maximum values (in the Spectrum
range settings - see below) of the selected spectrum to 0 and 100 respectively. If the selected spectrum has been
used to colour objects according to more than one field, the autorange function will choose the smallest and largest
values across all of these fields. The from scene drop-down menu allows you to select the scene from which the
spectrum will be auto-ranged.

The overlay or overwrite options allow you to choose whether a spectrum will completely over-ride any other
material settings (overwrite), therefore completely colouring the object as the spectrum appears in the preview
panel - or whether the spectrum combines with the other material settings of the object so that the final colour is a
combination of the spectrum and other material settings (overlay).

Preview Panel

This panel shows a horizontal bar, coloured using the selected spectrum. The bar also shows the range that the
spectrum is currently set to, using a series of numbered labels. Clicking in the preview panel changes the number

46 Chapter 4. Cmgui user documentation

http://cmiss.bioeng.auckland.ac.nz/development/examples/a/a7/index.html

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.19: Figure 1: The spectrum editor.4.14. CMGUI Spectrum Editor Window 47

ABI Software Book, Release 0.2-PMR@HARMONY

of these labels from 4 to 10 to 2, then cycles through these values. Currently the preview panel can not display
multi-component spectra.

Settings Editor

The settings editor is where each spectrum is set up. It contains a number of controls.

• Spectrum component list: The top of this list has four buttons; Add, Delete, Up, and Down. Below these
buttons is a list of the components that make up the selected spectrum. Spectra in cmgui can be made up
of multiple components; these can be added, deleted or re-ordered using this list. Using these “sub-spectra”
you are able to create spectra that have different colour ranges for different parts of the data range they
cover, or spectra that have different colour ranges for different dimensions.

• Data component: This text box allows you to enter which data component of a multi-component field the
spectrum will colour according to.

• Spectrum range: This set of controls is used to set up the range of values the spectrum covers. The Min.
and Max. text boxes allow you to enter values for the minimum and maximum values of the spectrum.
There are also four check boxes that allow you to change the behaviour of a spectrum at its start and end
points.

• Colour: This drop-down menu provides a selection of pre-set colour settings that can be applied to the
currently selected spectrum component. Although many of the colour ranges are fairly self-explanatory, a
number of them have special features which are useful for creating specialized spectra. The contour bands
and step colour settings have further settings associated with them.

– Rainbow: This is a standard rainbow colour range.

– Red: This is a red to black colour range. It is applied as a single “channel” of red to the spectrum; this
can be used to add to other spectrum components to make multi-component spectra.

– Green: This is a single channel green to black colour range.

– Blue: This is a single channel blue to black colour range.

– White to blue: This is a white to blue colour range.

– White to red: This is a white to red colour range.

– Monochrome: This is a black to white colour range.

– Alpha: This is a single channel transparent to opaque spectrum.

– Contour bands: This colour option creates a series of evenly spaced black bands that can be further
edited to get the correct number, width and spacing desired.

– Step: This is a colour range which has a sharp transition from saturated red to saturated green.

• Type: This drop down menu allows you to choose between linear and log scale spectra. The Reverse check
box allows you to swap the direction of the spectrum. If a log scale is selected as the type, the Exaggeration
settings become available.

– Exaggeration: This text box allows you to specify how strongly the spectrum is exaggerated.

– Left/Right: These radio buttons allow you to choose the direction of the exaggeration.

• Normalised colour range: These two text boxes allow you to specify the portion of the colour range that
is displayed across the chosen range of values for the spectrum component. The default values of 0 and 1
display the entire colour range, and other values allow you to choose where in the colour range the spectrum
component begins and ends. For example, 0.5 and 1 would display only the upper half of the colour range;
0 and 0.5 would display only the lower half; 0.25 and 0.75 would display the middle section of the colour
range.

• Number of bands: This text box is enabled when the contour bands colour type is chosen. Enter a value
to specify the number of contour bands.

48 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

• Step value: This text box is enabled when the step colour type is chosen. Enter a value somewhere between
the values specified in Spectrum range to specify where the step occurs in the spectrum.

Visualizing element fields using surfaces

Surfaces are graphical representations that can be used to represent two or three dimensional elements in CMGUI.
Surfaces can be used to represent the faces of a 3D element or mesh, for example.

Surfaces and are created as graphics in the scene editor. To create a very simple surface graphic, go to the File
menu, select Read, then Node file. Read in cube.exnode from the example a2 directory. Then using the Read
and Elements file menu options, read in cube.exelem from the same directory. If you now create a graphics
window, you will see a simple cube rendered in the default lines graphic. Open the scene editor window by
selecting it from the Graphics menu. Select the cube scene object, then in the graphics panel select surfaces in the
drop-down menu. Click the Add button to the right of this menu. A new graphical setting will appear in the list,
below the lines graphical setting. In the 3D window, your cube will now be rendered with white shaded surfaces.

The tessellation setting of the surface graphical setting determines the detail level of surfaces. Each face in a
surface graphical setting is divided into a number of squares (each made up of two triangles) determined by the
tessellation. The discretization can be independently set for each of the three coordinate dimensions, allowing you
to set different detail levels for different parts of surface.

Creating an AVI from a series of images - Windows

This tutorial will describe a method of compiling a series of images saved from CMGUI into an AVI format movie
file on the Windows operating system. There are other methods, but the one described here can be achieved easily
using free software, and produces excellent, highly customizable results.

An AVI file is a Windows format - however, it can be played on most computers including those running Mac OS
X or Linux. It can also be uploaded to online video sites such as YouTube.

Software used

The following pieces of software are used in this tutorial - click on the name of the software to navigate to a
download page for each item:

• VirtualDub - This is an open source AVI editing/capturing application. For the purposes of this tutorial, it
allows you to load in a series of image files as movie frames, and save the resulting movie as an AVI.

• FFDShow - This is a Video for Windows and Directshow codec for decoding and encoding a large number
of video and audio formats. With this installed you can save AVI files from VirtualDub using a large range
of codecs.

• WinFF - This is a free windows front-end to ffmpeg_ (. This tool allows easy conversion of videos from
one format to another.

• CamStudio - This is a free open source tool for recording screen activity. This represents an alternative
method for capturing quick movies of CMGUI.

Installation of VirtualDub and FFDShow is a requirement for following this tutorial. You will need administrator
rights on your computer to install FFDShow; VirtualDub is simply unzipped into a directory and run directly.
Camstudio is only required if you wish to experiment with recording the CMGUI graphics window directly.

Compiling a series of images into a movie

When making a movie from a sequence of images, it is important to make sure that the images you created in
CMGUI are saved at a usable resolution. It is always best to use familiar resolutions like 800x600, 1024x768,

4.15. Visualizing element fields using surfaces 49

http://virtualdub.sourceforge.net/
http://www.free-codecs.com/download/FFDshow.htm
http://code.google.com/p/winff/
http://camstudio.org/
http://www.cmiss.org/cmgui/wiki/UsingCMGUITheGraphicsWindow

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.20: Figure 1: Adding surfaces to a mesh Using the example a2 cube, adding a surface graphical setting
creates a basic surface in the default material (white).

50 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

or 1920x1080. Many video formats require specific resolutions to work properly; codecs often are restricted to
multiples of 2, 4, or 8 for both the height and width in pixels.

Creating a movie from a series of images using VirtualDub is very simple:

• Load VirtualDub. The first time you do this you may be presented with a window where certain options
may be set. You can safely dismiss this window and load VirtualDub.

• Go to the File menu and select Open video file.... (Ctrl-O)

• Locate and load the first image in your sequence of images.

VirtualDub will automatically load the entire numbered sequence of images in as movie frames, in the correct
order. This works whether you have a 00001-99999 or a 1-99999 style numbering scheme. You will now see two
“screens” side by side, each displaying the first image in your sequence. This is the first frame of your movie,
which can now be played within VirtualDub. The two screens display the input and the output. The input screen
shows the movie you loaded, in this case the series of frames from the images. The output screen shows the
original movie with any filters (such as resizing, contrast adjustments, sharpening etc) that you have applied to it.

Fig. 4.21: Figure 1: The main VirtualDub window This window displays the play controls (which also include
marking tools for editing the video), the input and output panels, and the menus.

The next step is to set up the compression and codec settings of the movie you are going to save.

• Go to the Video menu and select Compression.... (Ctrl-P)

• Select the ffdshow Video Codec from the list of codecs.

4.16. Creating an AVI from a series of images - Windows 51

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 4.22: Figure 3: Selecting a codec The codecs listed may differ from those shown here. Select ffdshow Video
Codec.

52 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

• Notice the Format restrictions box on the right hand side - this will inform you of any requirements your
selected codec has for input. For the ffdshow codec, your video resolution must be a multiple of 2 in both
width and height.

• Click on the Configure button. This will bring up a window with a range of settings for how the codec will
be used to compress your movie.

Fig. 4.23: Figure 4: The codec configuration window This window displays the controls for how the codec will
compress your movie. The ffdshow codec actually enables you to encode your movie in any of a large number of
different codecs; the codec is chosen from the codec selection drop-down menu.

From this settings window you can set up which codec you wish to use to compress your movie, and how much
compression you wish to apply. Different codecs have different pros and cons; these days it is often best to stick to
the more modern codecs, as a majority of computers on all platforms should be able to play them. Good codecs to
choose are MPEG-2, MPEG4, and H.264. MPEG-2 is an older codec that offers good backwards compatibility, but
encodes lower quality videos with larger file sizes. MPEG4 and its successor H.264 generally offer substantially
better quality and/or smaller file sizes. The following steps will produce an AVI using the MPEG4 codec, which
is widely supported. If you wish to use another codec, the steps are essentially the same.

• Select the MPEG-4 codec from the codec selection drop-down menu.

• Make sure the Mode setting is one pass - average bitrate.

• Set the Bitrate (kbps) text box to 1000.

4.16. Creating an AVI from a series of images - Windows 53

ABI Software Book, Release 0.2-PMR@HARMONY

• Click Apply and then OK. Click OK in the codec selection window.

• In the main VirtualDub window, go to the File menu and select Save as AVI. Enter a name for your movie
and click Save.

A status window will appear, with some information about the progress of the AVI creation.

Fig. 4.24: Figure 5: Progress window

Once the encoding is finished, find your file and double click on it to play it. Check the file size, and the quality
of the movie. If the file is too big, change the codec settings to use a lower bitrate and save it again. If the movie
is poor quality, set the bitrate higher and try again. 1000 kbps gives a good quality 640x480 movie in MPEG-4
encoding, with file sizes of about 7 megabytes per minute. With H264 encoding, bitrates as low as 300kbps can
give remarkably good results at 640x480 depending on the content of the movie.

Creating a movie from images using FFMPEG

An alternative to using Virtualdub is to use the command line tool ‘FFMPEG‘_. This is a powerful, open source
tool that can perform a large number of video-related tasks. Documentation for FFMPEG can be found on the
project website.

An example command line for creating a movie from image files using FFMPEG is:

ffmpeg -f image2 -i image%d.jpg output.mpg

For more information, please refer to the documentation linked to above.

54 Chapter 4. Cmgui user documentation

http://www.ffmpeg.org/ffmpeg.html

ABI Software Book, Release 0.2-PMR@HARMONY

Converting your movie to other formats

Sometimes you will want to have your movie in a format other than AVI, or you may wish to further tune the
compression and quality of your movie. For example, using the H.264 codec with an AVI creates a non-standard
file; it is usually better to encode an mp4 file using H.264.

Converting to mp4 using Handbrake

Handbrake is an open source video converter that is very fast and effective for converting videos to MP4 format.
The application is quite easy to use, and has a number of built-in presets for converting video for certain purposes
such as uploading to youtube, or playing on mobile devices.

Convert your movie to another format using WinFF

WinFF is a useful tool for optimizing the file size or quality of your movies, as well as for converting from AVI to
other file formats such as mp4 or mov. When converting using WinFF, it is useful to have an uncompressed movie
file to work with. To create an uncompressed AVI from VirtualDub, select the Uncompressed RGB/YCbCr codec
when creating the AVI file as detailed above.

The following steps detail how to encode an H.264 codec mp4 file from an AVI:

• Load WinFF.

• Click on the Options button (far right) to show the advanced options.

• Click on the Add button, and select the movie file you wish to convert.

• Select MP4 from the Convert to... drop-down menu.

• Select H.264 in MP4(4:3) from the preset drop-down menu, to the left of the Convert to... drop-down menu.
The 4:3 refers to the aspect ratio of your video; standard sizes such as 320x240, 640x480 or 1024x768 have
this aspect ratio. If your movie has a different aspect ratio, enter it into the Aspect Ratio text box, or enter
the resolution of your movie directly into the Video Size text boxes.

• Enter a value such as 500 or 1000 into the Video Bitrate text box.

• Click on the Convert button.

By default, WinFF will create the converted movie file in your My Documents folder. You may choose a different
desination folder for the converted movie by entering a different path in the Output Folder text box.

The cmgui EX format guide: exnode and exelem files

Contents

• The cmgui EX format guide: exnode and exelem files

– Overview

– General Syntax

– Regions

– Groups

– Field declaration headers

– Comments

– Defining nodes and node fields

– Defining elements and element fields

4.17. The cmgui EX format guide: exnode and exelem files 55

http://handbrake.fr/

ABI Software Book, Release 0.2-PMR@HARMONY

– Further information

Overview

Spatially-varying “finite element” field definitions are commonly imported into cmgui in two parts:

1. ”.exnode” files containing definitions of nodes which are points identified by a unique integer identifier, and
for which field parameters are listed.

2. ”.exelem” files containing definitions of elements which are n-dimensional coordinate spaces, and the func-
tions giving field values over them, usually by interpolating node field parameters.

This division is arbitrary since they share a common format able to define both nodes and elements, and the fields
defined over them. The extensions ”.exnode” and “exelem” are merely conventions for the above uses. Any
filename extension is acceptable, and full file names with extensions should always be specified in your scripts
and command files.

Nodes with literal field values stored for them do not just support element interpolation, but are widely used to
represent any point data, and there need not be any associated elements. You will occasionally see files with the
”.exdata” extension which are identical to ”.exnode” files but read in with a different command (“gfx read data
. . . ”) so that the objects and associated fields are put in a different set of node objects referred to within cmgui as
data rather than nodes, and which are unable to be interpolated in element fields. Note the current limitation of
cmgui that each region consists of one list of node objects, one list of elements, and one list of data points.

General Syntax

Cmgui EX files are human-readable text files which are usually created by export from cm or OpenCMISS. They
can also be created by scripts or by hand. Due to their complexity, particularly in defining element interpolation,
editing an existing file is usually the easiest way to create new data files by hand.

The format has been around for many years and has several exacting rules which can catch the unwary:

1. Main blocks of the file begin with tokens such as “Group name”, “Shape”, “#Fields”, “Node”, “Element”
which must be written in full with exact capitalization. Within these blocks are further tokens indicating
sub-blocks of data to be read, each with their own rigid rules.

2. The characters used to separate tokens, identifiers, parameters and other data are quite inconsistent and
could be white space, commas, colons, full stops (periods), equal signs and so on. In each case the precise
character must be used. Whitespace separators generally includes any number of spaces, tabs, end of line
and line feed characters. Non-whitespace separator characters can generally be surrounded by whitespace.

3. All array indices start at 1, but scale factor index 0 has the special meaning of using unit scale factor value,
1.0.

4. Node and element identifiers must be positive integers.

Fortunately, cmgui import commands (“gfx read node/element/data”) report the line number in the file at which
the first errant text is located (do not confuse this with line element numbers). Unfortunately the actual problem
may be earlier: if the previous block was incomplete then the first text of the next block, however correct, will be
complained about as not matching the tokens and data expected for the previous block.

Regions

The EX format defines fields, nodes, elements and groups (sets of nodes and elements) within regions. These
objects belong to their respective region and are independent of similarly identified objects in other regions.

Cmgui version 2.6 (released: May 2009) introduces a “Region” keyword which specifies the path to the region
which any following fields and objects are defined within until the next Region keyword or end of file. The format
is as follows:

56 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Region: /PATH_TO_REGION

Examples:

! The root region for this file:
Region: /

! Region "joe" within region "bob":
Region: /bob/joe

The region path must always be written as an absolute path from the root region of the file, i.e. as a series of zero
or more region names starting with and separated by forward slash “/” characters. Region names must start with
an alphanumeric character and contain only alphanumeric characters, underscores ‘_’ and spaces; spaces are not
permitted at the start or end of the name. Colons ‘:’ and dots/periods ‘.’ are permitted but discouraged.

Versions of cmgui prior to 2.6 implicitly read data into the root region, and will report an error for the unrecognised
“Region” keyword. The first non-comment keyword in post Cmgui 2.6 EX files should be a Region keyword; to
maintain compatibility with older files it may alternatively begin with a Group declaration.

With EX files you are free to put many regions (and groups) in the same file, or to keep each region (or group)
in separate files. The choice is up to the user, although it is more flexible to use separate files, since commands
for reading EX files into cmgui (e.g. gfx read nodes/elements/data) permit the file’s root region to be mapped to
any region. For maximum flexibility and to avoid potential merge conflicts, it is recommended that you keep your
model data out of the Cmgui root region.

Cmgui example a/region_io gives several example EX files defining fields in regions and sub-groups.

Groups

The Group keyword indicates that all following nodes and elements until the next Group or Region keyword are
“tagged” as belonging to a group (set) of the specified name:

Group name: GROUP_NAME

There can be any number of groups in a single region, each potentially sharing some or all of the same nodes and
elements from the region they belong to. Groups are entirely contained within their particular region; groups with
the same name in different regions are completely independent.

Groups have the same name restrictions as regions. They are not written as a path - just a single name within the
enclosing region.

Older versions of Cmgui required nodes, elements and fields to always be defined within a group (within the
implied root region), hence the Group keyword was always the first keyword in the file. Since Cmgui 2.6 this is
no longer a limitation.

In older EX files it was common to have fields defined after/within a group declaration. However the grouping
only ever applies to nodes and element - fields always belong to the region. It is more common to define the fields
with nodes and elements under the region with no group, and list only node and element identifiers with no fields
under the groups.

Field declaration headers

Whether the EX file is listing nodes or elements, there is broad similarity in the way in which they and their field
data is listed. It consists of a header declaring the number and details of fields being defined for the respective
object type, followed by the definitions of the objects themselves. An example header:

#Fields=1
1) coordinates, coordinate, rectangular cartesian, real, #Components=3
... field data specific to nodes or elements ...

4.17. The cmgui EX format guide: exnode and exelem files 57

ABI Software Book, Release 0.2-PMR@HARMONY

The above header declares a field with the name “coordinates”. The field is tagged as usage type “coordinate”
- this is a hint which tells cmgui that this field is appropriate for use as a coordinate field. Other values for
this hint are “anatomical” for special fibre fields, and “field” for all other fields. By default, cmgui will use the
first coordinate field in alphabetical name order for the coordinates of graphics. The coordinates declared in this
header are embedded in a rectangular Cartesian coordinate system with 3 real-valued components. The rectangular
Cartesian coordinate system is assumed if none is specified. The value type real is frequently omitted as it is the
default; other types such as integer, string and element_xi are only usable in node fields and integer for grid-based
element fields. More complex declarations are given throughout this document. Note that if there is no header
or the header has “#Fields=0”, then nodes and elements can be defined or listed for adding to a group without
defining fields.

Following each line declaring the main details of a field are the details on each field component including the
name and the parameter values to be supplied with each node, or the basis functions and parameter mappings to
be supplied with each element. These are described later.

There can be only one field of a given name in a region, but it can be defined on nodes, elements and data in that
region provided the field is consistently declared in the header, including same value type, numbers of components
and component names.

Note that the #Fields keyword in element field headers are additionally preceded by the following keywords and
sub-blocks which are described in later examples:

#Scale factor sets=~
...
#Nodes=~

Comments

Since Cmgui version 2.6 EX files containing comments are now able to be read. Comment lines begin with !
(exclamation mark character) and may only be placed in parts of the file where a Region, Group, Shape, Node,
Element, Values or #Field header keyword is permitted. Putting comments anywhere else will result in obscure
errors or undefined behaviour!

Comments are useful for adding source details or copyright/license information to your files, or to document parts
of the file. Cmgui ignores the comment lines: they will not be rewritten when exporting an EX file.

Some example comments preceding other keywords:

! Copyright (C) 2009 The Author
Region: /heart

! This following node is the apex of the heart:
! It has 10 versions of all nodal parameters
Node: 13

Note that errors are reported if you attempt to read EX files with comments into versions of Cmgui prior to 2.6.

Defining nodes and node fields

Example: specifying 3-D coordinates of nodes

Following is an example reading 8 nodes numbered from 1 to 8, with a field “coordinates” giving positions at the
corners of a unit cube, adapted from cmgui example a/a2:

Region: /cube
Shape. Dimension=0
#Fields=1
1) coordinates, coordinate, rectangular cartesian, #Components=3
x. Value index=1, #Derivatives=0
y. Value index=2, #Derivatives=0

58 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

z. Value index=3, #Derivatives=0
Node: 1
0.0 0.0 0.0

Node: 2
1.0 0.0 0.0

Node: 3
0.0 1.0 0.0

Node: 4
1.0 1.0 0.0

Node: 5
0.0 0.0 1.0

Node: 6
1.0 0.0 1.0

Node: 7
0.0 1.0 1.0

Node: 8
1.0 1.0 1.0

Notes:

• The first line indicates that the following objects will be put in a group called “cube”. Ex files must begin
with a group declaration.

• The second line says that zero dimensional nodes are to be read until a different shape is specified. You will
seldom see this line in any .exnode file because 0-D nodes are the default shape at the start of file read and
when any new group is started.

• The next five lines up to the first Node is a node field header which declares finite element fields and
indicates what field parameters will be read in with any nodes defined after the header. The first line of the
header indicates only one field follows.

• The first line following the #Fields declares a 3-component coordinate-type field called “coordinates” whose
values are to be interpreted in a rectangular Cartesian coordinate system. This field defaults to having real
values.

• Following the declaration of the field are the details of the components including their names and the pa-
rameter values held for each, with the minimum being the value of the field at that node. The above node
field component definitions indicate that there are no derivative parameters. The “Value index” is redundant
since the index of where values for components “x”, “y” and “z” of the “coordinates” field are held in each
node”s parameter vector is calculated assuming they are in order (the correct index is written for interest).

• Finally each of the nodes are listed followed by the number of parameters required from the node field
header.

Example: multiple node fields and derivative parameters

A slightly more complex example adds a second field “temperature”:

Region: /heated_bar
#Fields=2
1) coordinates, coordinate, rectangular cartesian, #Components=2
x. Value index=1, #Derivatives=0
y. Value index=2, #Derivatives=0

2) temperature, field, rectangular cartesian, #Components=1
1. Value index=3, #Derivatives=1 (d/ds1)

Node: 1
0.0 0.0
37.0 0.0

Node: 2
1.0 0.0
55.0 0.0

Node: 3

4.17. The cmgui EX format guide: exnode and exelem files 59

ABI Software Book, Release 0.2-PMR@HARMONY

2.0 0.0
80.2 0.0

Notes:

• The coordinates field is now 2-dimensional. Beware it isn”t possible to have a two-component and three-
component field of the same name in the same region.

• The temperature field is of CM type field which merely means it has no special meaning (as opposed to
the coordinate CM field type hint for the “coordinates”). Although it is not entirely relevant, the coordinate
system must still be specified since cmgui performs appropriate transformations whenever it is used as a
coordinate field.

• The scalar (single component) temperature field has two parameters for each node, the first being the exact
temperature at the node, the second being a nodal derivative. The optional text “(d/ds1)” labels the derivative
parameter as the derivative of the temperature with respect to a physical distance in space. It isn”t until the
definition of element interpolation that its contribution to the element field is known.

Example: node derivatives and versions in the prolate heart

The following snippet from example a/a3 shows the nodal parameters held at the apex of the prolate heart model:

#Fields=2
1) coordinates, coordinate, prolate spheroidal, focus=0.3525E+02, #Components=3
lambda. Value index=1,#Derivatives=3 (d/ds1,d/ds2,d2/ds1ds2)
mu. Value index=5, #Derivatives=0
theta. Value index=6,#Derivatives=0, #Versions=10

2) fibres, anatomical, fibre, #Components=3
fibre angle. Value index=16, #Derivatives=1 (d/ds1)
imbrication angle. Value index=18, #Derivatives= 0
sheet angle. Value index=19, #Derivatives=3 (d/ds1,d/ds2,d2/ds1ds2)

Node: 13
0.984480E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
0.253073E+00 0.593412E+00 0.933751E+00 0.127409E+01 0.188932E+01 0.

→˓250455E+01 0.373500E+01 0.496546E+01 0.558069E+01 0.619592E+01
-0.138131E+01 -0.117909E+01
0.000000E+00

-0.827443E+00 -0.108884E+00 -0.245620E+00 -0.153172E-01

Notes:

• This example uses a prolate spheroidal coordinate system for the coordinate field. This is inherently heart-
like in shape allowing fewer parameters to describe the heart, and requires a focus parameter to set is scale
and form.

• The “theta” component of the prolate coordinates has 10 versions meaning there are 10 versions of each
value and derivative specified. In this case there are no derivatives so only 10 values are read in. 10 versions
are used to supply the angles at which each line element heads away from the apex of the heart which is on
the axis of the prolate spheroidal coordinate system.

• Node field parameters are always listed in component order, and for each component in the order:

value then derivatives for version 1
value then derivatives for version 2
etc.

• The second field “fibres” declares a field of CM type anatomical with a fibre coordinate system. In elements
these fields are interpreted as Euler angles for rotating an ortho-normal coordinate frame initially oriented
with element “xi” axes and used to define axes of material anisotropy, such as muscle fibres in tissue.

60 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Example: embedded locations in a mesh

Following is the file “cube_element_xi.exdata” taken from cmgui example a/ar (exnode formats), which defines a
node field containing embedded locations within elements:

Group name: xi_points
#Fields=1
1) element_xi, field, element_xi, #Components=1
1. Value index=1, #Derivatives=0

Node: 1
E 1 3 0.25 0.25 0.75

Node: 2
E 1 3 0.25 0.5 0.75

Node: 3
E 1 3 1 0.25 0.75

Node: 4
E 1 3 1 1 1

Node: 5
E 1 3 0 0 0

Node: 6
F 3 2 0.3 0.6

Node: 7
L 1 1 0.4

Notes:

• The field named “element_xi” uses the special value type confusingly also called element_xi indicating it
returns a reference to an element and a location within its coordinate “xi” space. Only 1 component and no
derivatives or versions are permitted with this value type.

• Element xi values are written as:

[region path] {element/face/line} number dimension xi-coordinates
Where the region path is optional and element/face/line can be abbreviated to as little as one character, case
insensitive. Hence node 1 lists the location in three-dimensional element number 1 where xi=(0.25,0.25,0.75);
node 6 lists a location in two-dimensional face element number 3 with face xi=(0.3,0.6).

• Node fields storing embedded locations permit fields in the host element at those locations to be evalu-
ated for the nodes using the special embedded computed field type, for example: “gfx define field embed-
ded_coordinates embedded element_xi element_xi field element_coordinates”.

Special field types

The example a/ar (exnode formats) and a/aq (exelem formats) lists several other special field types including
constant (one value for all the nodes it is defined on) and indexed (value indexed by the value of a second integer
“index field”), but their use is discouraged and they may be deprecated in time. If such functionality is required,
prefer computed fields created with “gfx define field” commands or request indexed functionality on the cmgui
tracker.

Defining elements and element fields

Cmgui elements, shapes, faces and identifiers

Elements are objects comprising an n-dimensional (with n>0) coordinate space serving as a material coordinate
system charting part or all of a body of interest. The set of elements covering the whole model is referred to as a
mesh. We often use the Greek character “xi” to denote the coordinate within each element.

4.17. The cmgui EX format guide: exnode and exelem files 61

ABI Software Book, Release 0.2-PMR@HARMONY

Each element has a shape which describes the form and limits of this coordinate space. Shapes are declared in the
EX format are follows:

Shape. Dimension=n SHAPE-DESCRIPTION

Up to three dimensions, the most important shape descriptions are:

Shape. Dimension=0 nodes (no shape)
Shape. Dimension=1 line line shape, xi covering [0,1]
Shape. Dimension=2 line*line square on [0,1]
Shape. Dimension=2 simplex(2)*simplex triangle on [0,1]; xi1+xi2<1
Shape. Dimension=3 line*line*line cube on [0,1]
Shape. Dimension=3 simplex(2;3)*simplex*simplex

tetrahedron on [0,1]; xi1+xi2+xi3<1
Shape. Dimension=3 line*simplex(3)*simplex (and other permutations)

triangle wedge; line on xi1 (etc.)

Pairs of dimensions can also be linked into polygon shapes; see example a/element_types.

The shape description works by describing the span of the space along each xi direction for its dimension. The
simplest cases are the line shapes: “line*line*line” indicates the outer or tensor product of three line shapes, thus
describing a cube. If the shape description is omitted then line shape is assumed for all dimensions. Simplex
shapes, used for triangles and tetrahedra, cannot be simply described by an outer product and must be tied to
another dimension; in the EX format the tied dimension is written in brackets after the first simplex coordinate,
and for 3 or higher dimensional simplices all linked dimensions must be listed as shown for the tetrahedron shape.

The cmgui shape description is extensible to 4 dimensions or higher, for example the following denotes a 4-
dimensional shape with a simplex across dimensions 1 and 2, and an unrelated simplex on dimensions 3 and
4:

Shape. Dimension=4 simplex(2)*simplex*simplex(4)*simplex

Beware that while cmgui can in principle read such high-dimensional elements from exelem files, this has not
been tested and few graphics primitives and other features of cmgui will be able to work with such elements.

Elements of a given shape have a set number of faces of dimension one less than their own. A cube element has
6 square faces at xi1=0, xi1=1, xi2=0, xi2=1, xi3=0, xi3=1. Each square element itself has 4 faces, each of line
shape. The faces of elements are themselves elements, but they are identified differently from the real “top-level”
elements.

The cmgui EX format uses a peculiar naming scheme for elements, consisting of 3 integers: the element number,
the face number and the line number, only one of which should ever be non-zero. All elements over which fields
are defined or which are not themselves the faces of a higher dimensional element use the first identifier, the
element number. All 2-D faces of 3-D elements use the face number and all 1-D faces of 2-D elements (including
faces of faces of 3-D elements) use the line number. The naming scheme for faces of 4 or higher dimensional
elements is not yet defined. The element identifier “0 0 0” may be used to indicate a NULL face.

Element nodes, scale factors and parameter mappings

Cmgui elements store an array of nodes from which field parameters are extracted for interpolation by basis
functions. This local node array can be as long as needed. It may contain repeated references to the same nodes,
however it is usually preferable not to do this.

Cmgui elements can also have an array of real-valued scale factors for each basis function (see below).

These two arrays are combined in mapping global node parameters to an array of element field parameters ready
to be multiplied by the basis function values to give the value of a field at any “xi” location in the element.

Mappings generally work by taking the field component parameter at index i from the node at local index j and
multiplying it by the scale factor at index k for the basis function in-use for that field component. It is also possible
to use a unit scale factor by referring to the scale factor at index 0, and to not supply a scale factor set if only unit
scale factors are in use.

62 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Global-to-local parameter mappings are at the heart of the complexity in cmgui element field definitions and are
described in detail with the examples.

Cmgui element basis functions

Basis functions are defined in cmgui ex format in a very similar manner to element shapes, by outer (tensor)
product of the following functions along each xi axis:

constant constant
l.Lagrange linear Lagrange
q.Lagrange quadratic Lagrange
c.Lagrange cubic Lagrange
c.Hermite cubic Hermite
LagrangeHermite Lagrange at xi=0, Hermite at xi=1
HermiteLagrange Hermite at xi=0, Lagrange at xi=1
l.simplex linear simplex (see below)
q.simplex quadratic simplex (see below)
polygon piecewise linear around a polygon shape

It is not too difficult to extend these functions to higher order and to add other families of interpolation or other ba-
sis functions including the serendipity family, Bezier, Fourier etc. We are open to requests for new basis functions
on the cmgui tracker.

Lagrange, Hermite, Bezier and many other 1-D basis functions are able to be combined in multiple dimensions by
the outer product. This is not the case for simplex, polygon and serendipity families of basis functions which, like
element shapes, require linked xi dimensions to be specified.

Some example element bases:

l.Lagrange*l.Lagrange*l.Lagrange trilinear interpolation (8 nodes)
c.Hermite*c.Hermite bicubic Hermite (4 nodes x 4 params)
l.simplex(2)*l.simplex linear triangle (3 nodes)
q.simplex(2;3)*q.simplex*q.simplex quadratic tetrahedron (10 nodes)
c.Hermite*l.simplex(3)*l.simplex cubic Hermite * linear triangle (6
→˓nodes, 2 parameters per node)
constant*constant*l.Lagrange constant in xi1 and xi2, linearly varying in
→˓xi3

Most element bases have one basis functions per node which multiplies a single parameter obtained from that
node. For instance, a linear Lagrange basis expects 2 nodes each with 1 parameter per field component. A bilinear
Lagrange basis interpolates a single parameter from 4 nodes at the corners of a unit square. A 3-D linear-quadratic-
cubic Lagrange element basis expects 2*3*4 nodes along the respective xi directions, with 1 basis function and
one parameter for each node. A linear triangle has 3 nodes with 1 parameter each; a quadratic triangle has 6 nodes
with 1 parameter.

1-D Hermite bases provide 2 basis functions per node, expected to multiple two parameters: (1) the value of the
field at the node, and (2) the derivative of that field value with respect to the xi coordinate. If this derivative is
common across an element boundary then the field is C¬1 continuous there. Outer products of 1-D Hermite basis
functions double the number of parameters per node for each Hermite term. A bicubic Hermite basis expect 4
nodes with 4 basis functions per node, multiplying 4 nodal parameters: (1) value of the field, (2) the derivative
of the field with respect to the first xi direction, (3) the derivative with respect to the second xi direction and
(4) the double derivative of the field with respect to both directions referred to as the cross derivative. Tri-cubic
Hermite bases have 8 basis functions per node, one multiplying the value, 3 for first derivatives, 3 for second
(cross) derivatives and a final function multiplying a triple cross derivative parameter.

The ex format requires nodes contributing parameters for multiplication by a basis to be in a very particular order:
changing fastest in xi1, then xi2, then xi3, and so on. Note this is not necessarily the order nodes are stored in
the element node array, just the order in which those nodes are referenced in the parameter map. In most example
files the order of the nodes in the element node list will also follow this pattern.

Cmgui example a/element_types provides a large number of sample elements using complex combinations of
basis functions on supported 3-D element shapes.

4.17. The cmgui EX format guide: exnode and exelem files 63

ABI Software Book, Release 0.2-PMR@HARMONY

Example: tri-linear interpolation on a cube

Following is an example of a coordinate field defined over a unit cube, adapted from example a/a2, with faces and
scale factors removed to cut the example down to minimum size, and assuming the cube node file from earlier has
already been loaded:

Region: /cube
Shape. Dimension=3 line*line*line
#Scale factor sets=0
#Nodes=8
#Fields=1
1) coordinates, coordinate, rectangular cartesian, #Components=3
x. l.Lagrange*l.Lagrange*l.Lagrange, no modify, standard node based.
#Nodes= 8
1. #Values=1
Value indices: 1
Scale factor indices: 0

2. #Values=1
Value indices: 1
Scale factor indices: 0

3. #Values=1
Value indices: 1
Scale factor indices: 0

4. #Values=1
Value indices: 1
Scale factor indices: 0

5. #Values=1
Value indices: 1
Scale factor indices: 0

6. #Values=1
Value indices: 1
Scale factor indices: 0

7. #Values=1
Value indices: 1
Scale factor indices: 0

8. #Values=1
Value indices: 1
Scale factor indices: 0

y. l.Lagrange*l.Lagrange*l.Lagrange, no modify, standard node based.
#Nodes= 8
1. #Values=1
Value indices: 1
Scale factor indices: 0

2. #Values=1
Value indices: 1
Scale factor indices: 0

3. #Values=1
Value indices: 1
Scale factor indices: 0

4. #Values=1
Value indices: 1
Scale factor indices: 0

5. #Values=1
Value indices: 1
Scale factor indices: 0

6. #Values=1
Value indices: 1
Scale factor indices: 0

7. #Values=1
Value indices: 1
Scale factor indices: 0

8. #Values=1
Value indices: 1

64 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Scale factor indices: 0
z. l.Lagrange*l.Lagrange*l.Lagrange, no modify, standard node based.
#Nodes= 8
1. #Values=1
Value indices: 1
Scale factor indices: 0

2. #Values=1
Value indices: 1
Scale factor indices: 0

3. #Values=1
Value indices: 1
Scale factor indices: 0

4. #Values=1
Value indices: 1
Scale factor indices: 0

5. #Values=1
Value indices: 1
Scale factor indices: 0

6. #Values=1
Value indices: 1
Scale factor indices: 0

7. #Values=1
Value indices: 1
Scale factor indices: 0

8. #Values=1
Value indices: 1
Scale factor indices: 0

Element: 1 0 0
Nodes:

1 2 3 4 5 6 7 8

Notes:

• “Shape. Dimension=3 line*line*line” declares that following this point three dimensional cube-shaped
elements are being defined. “line*line*line” could have been omitted as line shapes are the default.

• “#Scale factor sets=0” indicates no scale factors are to be read in with the elements that follow. Scale factors
are usually only needed for Hermite basis functions when nodal derivative parameters are maintained with
respect to a physical distance and the scale factors convert the derivative to be with respect to the element
xi coordinate. Avoid scale factors when not needed.

• The 4th line “#Nodes=8” says that 8 nodes will be listed with all elements defined under this header.

• Under the declaration of the “coordinates” field (which is identical to its declaration for the nodes) are the
details on how the field is evaluated for each field component. Each field component is always described
separately: each may use different basis functions and parameter mappings. In this example the components
“x”, “y” and “z” all use the same tri-linear basis functions and use an identical parameter mapping except
that parameters are automatically taken from the corresponding field component at the node.

• “no modify” in the element field component definition is an instruction to do no extra value manipulations
as part of the interpolation. Other modify instructions resolve the ambiguity about which direction one
interpolates angles in polar coordinates. The possible options are “increasing in xi1”, “decreasing in xi1”,
“non-increasing in xi1”, “non-decreasing in xi1” or “closest in xi1”. For use, see the prolate heart example
later.

• “standard node based” indicates that each element field parameter is obtained by multiplying one parameter
extracted from a node by one scale factor. An alternative called “general node based” evaluates each ele-
ment field parameter as the dot product of multiple node field parameters and scale factors; it is currently
unimplemented for I/O but is designed to handle the problems like meshing the apex of the heart with Her-
mite basis functions without requiring multiple versions. A final option “grid based” is described in a later
example.

• Following the above text are several lines describing in detail how all the element field parameters are

4.17. The cmgui EX format guide: exnode and exelem files 65

ABI Software Book, Release 0.2-PMR@HARMONY

evaluated prior to multiplication by the basis functions. Being a tri-linear Lagrange basis, 8 nodes must be
accounted for:

#Nodes= 8

Following are 8 sets of three lines each indicating the index of the node in the element”s node array from which
parameters are extracted (in this case the uncomplicated sequence 1,2,3,4,5,6,7,8), the number of values to be
extracted (1), the index of the each parameter value in the list of parameters for that field component at that node
and the index of the scale factor multiplying it from the scale factor array for that basis, or zero to indicate a unit
scale factor:

1. #Values=1
Value indices: 1
Scale factor indices: 0

As mentioned earlier, the nodes listed in the mapping section must always follow a set order, increasing in xi1
fastest, then xi2, then xi3, etc. to match the order of the basis functions procedurally generated from the basis
description.

• At the end of the example is the definition of element “0 0 1” which lists the nodes 1 to 8.

Defining faces and lines

The above example is not ready to be fully visualised in cmgui because it contains no definitions of element faces
and lines. Cmgui requires these to be formally defined because it visualises element surfaces by evaluating fields
on face elements, and element edges via line elements. The command “gfx define faces ...” can create the faces
and lines after loading such a file. Alternatively they can be defined and referenced within the ex file as in the
following:

Region: /cube
Shape. Dimension=1
Element: 0 0 1
Element: 0 0 2
Element: 0 0 3
Element: 0 0 4
Element: 0 0 5
Element: 0 0 6
Element: 0 0 7
Element: 0 0 8
Element: 0 0 9
Element: 0 0 10
Element: 0 0 11
Element: 0 0 12

Shape. Dimension=2
Element: 0 1 0
Faces:
0 0 3
0 0 7
0 0 2
0 0 10

Element: 0 2 0
Faces:
0 0 5
0 0 8
0 0 4
0 0 11

Element: 0 3 0
Faces:
0 0 1
0 0 9
0 0 3
0 0 5

66 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Element: 0 4 0
Faces:
0 0 6
0 0 12
0 0 7
0 0 8

Element: 0 5 0
Faces:
0 0 2
0 0 4
0 0 1
0 0 6

Element: 0 6 0
Faces:
0 0 10
0 0 11
0 0 9
0 0 12

Shape. Dimension=3
Element: 1 0 0
Faces:
0 1 0
0 2 0
0 3 0
0 4 0
0 5 0
0 6 0
Nodes:

1 2 3 4 5 6 7 8

Likewise scale factors can be read in as listed in the cube.exelem file from cmgui example a/a2, however with
Lagrange basis functions the scale factors are all unit valued, so this is rather needless.

Example: collapsed square element

The following tricky example collapses a square element to a triangle by using the third local node twice:

Region: /collapse
Shape. Dimension=0
#Fields=1
1) coordinates, coordinate, rectangular cartesian, #Components=2
x. Value index=1, #Derivatives=0
y. Value index=2, #Derivatives=0

Node: 1
0.0 0.0

Node: 2
1.0 0.0

Node: 3
0.5 1.0

Shape. Dimension=1 line
Element: 0 0 1
Element: 0 0 2
Element: 0 0 3

Shape. Dimension=2 line*line
#Scale factor sets=0
#Nodes=3
#Fields=1
1) coordinates, coordinate, rectangular cartesian, #Components=2
x. l.Lagrange*l.Lagrange, no modify, standard node based.
#Nodes= 4
1. #Values=1

4.17. The cmgui EX format guide: exnode and exelem files 67

ABI Software Book, Release 0.2-PMR@HARMONY

Value indices: 1
Scale factor indices: 0

2. #Values=1
Value indices: 1
Scale factor indices: 0

3. #Values=1
Value indices: 1
Scale factor indices: 0

3. #Values=1
Value indices: 1
Scale factor indices: 0

y. l.Lagrange*l.Lagrange, no modify, standard node based.
#Nodes= 4
1. #Values=1
Value indices: 1
Scale factor indices: 0

2. #Values=1
Value indices: 1
Scale factor indices: 0

3. #Values=1
Value indices: 1
Scale factor indices: 0

3. #Values=1
Value indices: 1
Scale factor indices: 0

Element: 1 0 0
Faces:
0 0 1
0 0 2
0 0 3
0 0 0
Nodes:

1 2 3

Notes:

• Element 1 0 0 has a node array with only 3 nodes in it, but the third and fourth parameter mappings both
refer to the node at index 3 in the element node list.

• Note that face on the collapsed side of the element is undefined, as indicated by special face identifier 0 0 0.

• It is also possible to obtain an equivalent result by physically storing 4 nodes in the element but repeating
node 3 in that array.

Simplex elements: triangles and tetrahedra

The cmgui example a/testing/simplex defines two fields on a triangle element, one using a 6-node quadratic sim-
plex, the other a 3-node linear simplex basis. The element in that example stores 6 nodes in its node array, only 3
of which are used for the linear basis, but all 6 contribute parameters to the quadratic interpolation.

Example a/element_types has both linear and quadratic tetrahedra.

Example: multiple fields, bases and scale factor sets in the prolate heart

At the more complex end of the scale is this excerpt from the prolate heart model from cmgui example a/a3. It
defines two element fields using different basis functions for each field component. It was exported from cm which
always uses a full complement of scale factors i.e. one per basis function.

Shape. Dimension=3
#Scale factor sets= 4
c.Hermite*c.Hermite*l.Lagrange, #Scale factors=32

68 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

l.Lagrange*l.Lagrange*l.Lagrange, #Scale factors=8
l.Lagrange*l.Lagrange*c.Hermite, #Scale factors=16
l.Lagrange*c.Hermite*c.Hermite, #Scale factors=32

#Nodes= 8
#Fields=2
1) coordinates, coordinate, prolate spheroidal, focus= 0.3525E+02, #Components=3
lambda. c.Hermite*c.Hermite*l.Lagrange, no modify, standard node based.
#Nodes= 8
1. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 1 2 3 4

2. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 5 6 7 8

3. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 9 10 11 12

4. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 13 14 15 16

5. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 17 18 19 20

6. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 21 22 23 24

7. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 25 26 27 28

8. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 29 30 31 32

mu. l.Lagrange*l.Lagrange*l.Lagrange, no modify, standard node based.
#Nodes= 8
1. #Values=1
Value indices: 1
Scale factor indices: 33

2. #Values=1
Value indices: 1
Scale factor indices: 34

3. #Values=1
Value indices: 1
Scale factor indices: 35

4. #Values=1
Value indices: 1
Scale factor indices: 36

5. #Values=1
Value indices: 1
Scale factor indices: 37

6. #Values=1
Value indices: 1
Scale factor indices: 38

7. #Values=1
Value indices: 1
Scale factor indices: 39

8. #Values=1
Value indices: 1
Scale factor indices: 40

theta. l.Lagrange*l.Lagrange*l.Lagrange, decreasing in xi1, standard node
→˓based.

#Nodes= 8
1. #Values=1
Value indices: 1

4.17. The cmgui EX format guide: exnode and exelem files 69

ABI Software Book, Release 0.2-PMR@HARMONY

Scale factor indices: 33
2. #Values=1
Value indices: 1
Scale factor indices: 34

3. #Values=1
Value indices: 1
Scale factor indices: 35

4. #Values=1
Value indices: 1
Scale factor indices: 36

5. #Values=1
Value indices: 1
Scale factor indices: 37

6. #Values=1
Value indices: 1
Scale factor indices: 38

7. #Values=1
Value indices: 1
Scale factor indices: 39

8. #Values=1
Value indices: 1
Scale factor indices: 40

2) fibres, anatomical, fibre, #Components=3
fibre angle. l.Lagrange*l.Lagrange*c.Hermite, no modify, standard node based.
#Nodes= 8
1. #Values=2
Value indices: 1 2
Scale factor indices: 41 42

2. #Values=2
Value indices: 1 2
Scale factor indices: 43 44

3. #Values=2
Value indices: 1 2
Scale factor indices: 45 46

4. #Values=2
Value indices: 1 2
Scale factor indices: 47 48

5. #Values=2
Value indices: 1 2
Scale factor indices: 49 50

6. #Values=2
Value indices: 1 2
Scale factor indices: 51 52

7. #Values=2
Value indices: 1 2
Scale factor indices: 53 54

8. #Values=2
Value indices: 1 2
Scale factor indices: 55 56

imbrication angle. l.Lagrange*l.Lagrange*l.Lagrange, no modify, standard node
→˓based.

#Nodes= 8
1. #Values=1
Value indices: 1
Scale factor indices: 33

2. #Values=1
Value indices: 1
Scale factor indices: 34

3. #Values=1
Value indices: 1
Scale factor indices: 35

4. #Values=1
Value indices: 1

70 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Scale factor indices: 36
5. #Values=1
Value indices: 1
Scale factor indices: 37

6. #Values=1
Value indices: 1
Scale factor indices: 38

7. #Values=1
Value indices: 1
Scale factor indices: 39

8. #Values=1
Value indices: 1
Scale factor indices: 40

sheet angle. l.Lagrange*c.Hermite*c.Hermite, no modify, standard node based.
#Nodes= 8
1. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 57 58 59 60

2. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 61 62 63 64

3. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 65 66 67 68

4. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 69 70 71 72

5. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 73 74 75 76

6. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 77 78 79 80

7. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 81 82 83 84

8. #Values=4
Value indices: 1 2 3 4
Scale factor indices: 85 86 87 88

Element: 1 0 0
Faces:
0 1 0
0 2 0
0 3 0
0 4 0
0 5 0
0 6 0
Nodes:

19 82 14 83 5 52
→˓ 1 53

Scale factors:
0.1000000000000000E+01 0.2531332864778986E+02 0.3202170161207646E+02 0.

→˓8105758567679540E+03 0.1000000000000000E+01
0.2540127674788437E+02 0.3851739595427941E+02 0.9783910342424932E+03 0.

→˓1000000000000000E+01 0.2665607536220107E+02
0.2913687357203342E+02 0.7766746977550476E+03 0.1000000000000000E+01 0.

→˓2797776438705370E+02 0.3675988075068424E+02
0.1028459282538834E+04 0.1000000000000000E+01 0.3107367883817446E+02 0.

→˓3665266951220884E+02 0.1138933280984126E+04
0.1000000000000000E+01 0.3053066581298630E+02 0.4220277992007600E+02 0.

→˓1288478970118849E+04 0.1000000000000000E+01
0.3612724280632425E+02 0.3339669014010959E+02 0.1206530333619314E+04 0.

→˓1000000000000000E+01 0.3620256762563091E+02

4.17. The cmgui EX format guide: exnode and exelem files 71

ABI Software Book, Release 0.2-PMR@HARMONY

0.3810870609422361E+02 0.1379633009501423E+04
0.1000000000000000E+01 0.1000000000000000E+01 0.1000000000000000E+01 0.

→˓1000000000000000E+01 0.1000000000000000E+01
0.1000000000000000E+01 0.1000000000000000E+01 0.1000000000000000E+01

0.1000000000000000E+01 0.8802929891392392E+01 0.1000000000000000E+01 0.
→˓7673250860396258E+01 0.1000000000000000E+01

0.1368084332227282E+02 0.1000000000000000E+01 0.1181772996260416E+02 0.
→˓1000000000000000E+01 0.8802929891392392E+01

0.1000000000000000E+01 0.7673250860396258E+01 0.1000000000000000E+01 0.
→˓1368084332227282E+02 0.1000000000000000E+01

0.1181772996260416E+02
0.1000000000000000E+01 0.3202170161207646E+02 0.8802929891392392E+01 0.

→˓2818847942941958E+03 0.1000000000000000E+01
0.3851739595427941E+02 0.7673250860396258E+01 0.2955536416463978E+03 0.

→˓1000000000000000E+01 0.2913687357203342E+02
0.1368084332227282E+02 0.3986170022398609E+03 0.1000000000000000E+01 0.

→˓3675988075068424E+02 0.1181772996260416E+02
0.4344183441691171E+03 0.1000000000000000E+01 0.3665266951220884E+02 0.

→˓8802929891392392E+01 0.3226508800483498E+03
0.1000000000000000E+01 0.4220277992007600E+02 0.7673250860396258E+01 0.

→˓3238325173328371E+03 0.1000000000000000E+01
0.3339669014010959E+02 0.1368084332227282E+02 0.4568948852893329E+03 0.

→˓1000000000000000E+01 0.3810870609422361E+02
0.1181772996260416E+02 0.4503583978457821E+03

Notes:

• It can be seen that for each Hermite term in the basis function there are twice as many parameter values for
each node.

• The “Value indices” are indices into the array of parameters held for the field component at the node, starting
at 1 for the value. It is not possible to refer to parameters by names such as “value”, “d/ds1” or by version
number.

• The “decreasing in xi1” option specified for the theta component of the coordinates field specifies that as xi
increases, the angle of theta decreases. This needs to be stated since it is equally possible to interpolate this
angle in the opposite direction around the circle.

• All scale factors are listed in a single block; in this case there are 32+8+16+32=88 scale factors, listed in
the order of the scale factor set declaration at the top of the file excerpt. Scale factor indices are absolute
locations in this array, but they are considered invalid if referring to parts of the array not containing scale
factors for the basis used in the field component.

• Note how all the scale factors for the tri-linear Lagrange basis are equal to 1.0.

Example: per-element constant and grid-based element fields

Cmgui and its EX files also support storage of regular grids of real or integer values across elements. The grid is
assumed regular across N divisions on lines, N*M divisions on squares and N*M*P divisions on cubes.

Per-element constants are a special case using constant bases together with 0 grid divisions. These have only been
supported since Cmgui 2.7 (April 2010). See this extract from cmgui example a/element_constants:

1) temperature, field, rectangular cartesian, #Components=1
value. constant*constant*constant, no modify, grid based.
#xi1=0, #xi2=0, #xi3=0

Element: 1 0 0
Values :
48.0

Linear Lagrange interpolation is used when there are 1 or more element divisions. Following is an excerpt from
cmgui example a/aq “element formats”:

72 Chapter 4. Cmgui user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Group name: block
Shape. Dimension=3
#Scale factor sets=0
#Nodes=0
#Fields=2
1) material_type, field, integer, #Components=1
number. l.Lagrange*l.Lagrange*l.Lagrange, no modify, grid based.
#xi1=2, #xi2=3, #xi3=2

2) potential, field, real, #Components=1
value. l.Lagrange*l.Lagrange*l.Lagrange, no modify, grid based.
#xi1=2, #xi2=3, #xi3=2

Element: 1 0 0
Values:
1 1 3
1 1 3
1 2 3
1 2 2
1 1 3
1 1 3
1 2 3
2 2 2
1 3 3
1 3 3
2 2 3
2 2 2
13.5 12.2 10.1
14.5 12.2 10.1
15.5 12.2 10.1
16.5 12.2 10.1
12.0 11.0 10.0
13.0 11.0 10.0
14.0 11.0 10.0
15.0 11.0 10.0
10.5 10.7 9.9
11.5 10.7 9.9
12.5 10.7 9.9
13.5 10.7 9.9

Notes:

• “#xi1=2, #xi2=3, #xi3=2” actually refers to the number of divisions between grid points, so 3*4*3=36
values are read in, and represent values at the corners of the grid “cells”. If there are 2 divisions along an
xi direction, values are held for xi=0.0, xi=0.5 and xi=1.0. Under each element, values are listed in order of
location changing fastest along xi1, then along xi2, then along xi3.

• Only constant (for number-in-xi = 0) or linear Lagrange bases are supported. The basis is irrelevant for
integer-valued grids which choose the “nearest value”, so halfway between integer value 1 and 3 the field
value jumps directly from 1 to 3.

• Grid point values along boundaries of adjacent elements must be repeated in each element.

Further information

Further information about cmgui and its data formats can be found on the following web-site:

http://www.cmiss.org/cmgui

We also invite questions, bug reports and feature requests under the tracker at:

https://tracker.physiomeproject.org

Note: be sure to search and post under the “cmgui” project!

4.17. The cmgui EX format guide: exnode and exelem files 73

http://www.cmiss.org/cmgui
https://tracker.physiomeproject.org

ABI Software Book, Release 0.2-PMR@HARMONY

There are a number of examples which you can use to familiarise yourself with the functions and capabilities of
cmgui.

Todo

Add some useful command examples to command window doc - eg. “saving” graphics

74 Chapter 4. Cmgui user documentation

http://cmiss.bioeng.auckland.ac.nz/development/examples/a/index_thumbs.html

CHAPTER 5

OpenCMISS user documentation

OpenCMISS concepts

OpenCMISS has the following top level objects.

• Basis Functions

• Coordinate Systems

• Regions

• Problems

• Computational environments

• Base system(Diagnostics, I/O etc.)

Coordinate Systems

Coordinate system is a system for assigning an n-tuple of numbers or scalars to each point in an n-dimensional
space. It anchors the regions within the real world. Coordinate system can have different types such as:

• Rectangular cartesian

• Cylindrical polar

• Spherical polar

• Prolate spheroidal

• Oblate spheroidal

There is a global (world) coordinate system aligned with 3D rectangular cartesian space.

Coordinate system has the following attributes:

• User number

• Finished tag

• Type

• Number of dimensions

75

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 5.1: OpenCMISS top-level structure

• Focus (for prolate-spheriodal system only)

• Origins

• Orientation

Basis Functions

Basis functions are the key item to specify the field approximation/interpolation and the linking of nodes and
elements to form a mesh. Currently, it has two types: Lagrange-Hermite tensor product and Simplex. Lagrange-
Hermite tensor product can be further divided into linear to cubic lagrange, cubic and quadratic hermite. It can
be arbitrarily collapsed (two or more nodes in the same location) in any one direction or in any two directions to
give a degenerate basis. Simplex basic functions could contain line, triangular and tetrahedral elements. It could
be linear, quadratic or cubic. Arbitrary Gaussian quadrature can integrate from 1st to 5th order (3rd order for
lines at the moment). Can only have the same order in each direction at the moment. Specifying a basis function
automatically generates all necessary line and face basis functions as sub-bases of the basis function.

Basis function has the following attributes:

• User number

• Global number

• Family number

• Finished tag

• Type

• Is Hermite

76 Chapter 5. OpenCMISS user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

• Number of XI

• Number of XI coordinates

• ...

Regions

Regions are one of the primary objects in openCMISS. Regions are hierarchical in nature in that a region can have
one parent region and a number of daughter sub-regions. Daughter regions are related in space to parent regions
by an origin and an orientation of the regions coordinate system. Daughter regions may only have the same or
fewer dimensions as the parent region. There is a global (world) region (number 0) that has the global (world)
coordinate system.

region_definition.JPG

Region has the following attributes:

• User number

• Finished tag

• Label

• Number of sub(daughter) regions

• Coordinate system pointer

• Nodes

• Meshes

• Fields

• Equations

• Parent region pointer

• Daughter regions pointers

region_structure.JPG

Nodes

There are three places storing nodal information. Nodes associated with region defines the nodes identification
and the nodes geometric (initial) position.

Node has the following attributes:

• User number

• Global number

• Label

• Initial Position

Meshes

Meshes are topological constructs within a region which fields use to define themselves. Meshes are made up of a
number of mesh components. All mesh components in a mesh must “conform”, that is have the same number of
elements, Xi directions etc.

Mesh has the following attributes:

• User number

5.4. Regions 77

ABI Software Book, Release 0.2-PMR@HARMONY

• Global number

• Finished tag

• Region pointer

• Number of dimensions

• Number of components

• Embedded flag

• Embedding mesh pointer

• Embedded meshes pointers

• Number of elements

• Number of faces

• Number of lines

• Mesh topology pointers

• Decomposition pointers

mesh_structure.JPG

Mesh Topology

Mesh components (Topology) are made up from nodes, elements and basis functions. A new mesh component
is required for each different form of interpolation e.g., one mesh component is bilinear Lagrange and another is
biquadratic Lagrange. meshTopology_definition.JPG

Mesh topology has the following attributes:

• Mesh component number

• Mesh pointer

• Nodes pointers

• Element pointers

• DOFs pointers

meshTopology_structure.JPG

Decompositions

Mesh decomposition (partitioning) is used to split a computationally expensive mesh into smaller subdomains
(parts) for parallel computing.

Decomposition has the following attributes:

• User number

• Global number

• Finished tag

• Mesh pointer

• Mesh component number

• Decomposition type

• Number of domains

• Number of edge cut

78 Chapter 5. OpenCMISS user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

• Element domain numbers

• Decomposition topology pointer

• Domains pointers(list of domain which has the same size as the number of components in the mesh)

meshDecomposition_structure.JPG

Domain

Each domain stores domain information for relevant mesh component.

The domain object contains the following attributes:

• Decomposition pointer

• Mesh pointer

• Mesh component number

• Region pointer

• Number of dimensions

• Node domain(The domain number that the np’th global node is in for the domain decomposition. Note: the
domain numbers start at 0 and go up to the NUMBER_OF_DOMAINS-1)

• Domain mappings(for each mapped object e.g. nodes, elements, etc)

• Domain topology pointer(elements, nodes, DOFs)

meshDecompositionDomain_structure.JPG

Domain Mappings

Stores information for each mapped object e.g. nodes, elements, etc.

The domain mapping contains the following attributes:

• Number of local

• Total number of local

• Numbers of domain local

• Number of global

• Number of domains

• Number of internal

• Internal list

• Number of boundary

• Boundary list

• Number of ghost

• Ghost list

• Local to global map

• Global to local map

• Number of adjacent domains

• Pointer to list of adjacent domains by domain number

• List of adjacent domains

meshDecompositionDomainMapping_structure.JPG

5.4. Regions 79

ABI Software Book, Release 0.2-PMR@HARMONY

Fields

Fields are the central object for storing information and framing the problem. Fields have a number of field
variables i.e., u, du/dn, du/dt, d2u/dt2. Each field variable has a number of components. A field is defined on a
decomposed mesh. Each field variable component is defined on a decomposed mesh component.

Field can contains the following attributes:

• User number

• Global number

• Finished tag

• Region pointer

• Type(Geometric, Fibre, General, Material, Source)

• Dependent type(Independent, Dependent)

• Dimension

• Decomposition pointer

• Number of variables

• Variables

• Scalings sets

• Mappings(DOF->Field parameters)

• Parameter sets(distributed vectors)

• Geometric field pointer

• Geomatric field parameters

• Create values cache

field_structure.JPG

Field variable

Field variable stores variables for the field such as dependent variables. For example, in the Laplace’s equa-
tion(FEM), it stores two variables: u and du/dn. Each field variable has a number of components.

Field variable has the following attributes:

• Variable number

• Variable type

• Field pointer

• Region pointer

• Max number of interpolation parameters

• Number of DOFs

• Total number of DOFs

• Global DOF List

• Domain mapping pointer

• Number of components

• Components

80 Chapter 5. OpenCMISS user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Field Variable Component

Field Variable Component has the following attributes:

• Component number

• Variable pointer

• Field pointer

• Interpolation type

• Mesh component number

• Scaling index

• Domain pointer

• Max number of interpolation parameters

• Mappings(Field paramters->DOF)

Parameter set

Parameter set stores values for each field variable component.

field_parameter_set_definition.JPG

Parameter set has the following Attributes:

• Set index

• Set type

• Parameters pointer

Equation Sets

Equations sets are aimed to have multiple classes, e.g. Elasticity, Fluid mechanics, Electromagnetics, General
field problems, Fitting, Optimisation. Different equations are within each class, e.g. Bidomain, Navier-stokes etc.
Each equation can use different solution techniques, e.g. FEM, BEM, FD, GFEM. The equation set is associated
with a region and is built using the fields defined on the region.

The numerical methods are used which will result in a discretised matrix-vector form of the governing equations.
openCMISS is designed to generate equations sets with a number of “equations” matrices.

e.g, damped mass spring system Mu + Cu + Ku = f will be represented as:

fieldEquationsets-matrix.JPG

Equations Set has the following attributes:

• User number

• Global number

• Finished tag

• Region pointer

• Class identifier

• Type identifier

• Sub type identifier

• Linearity type(?)

• Time dependence type(?)

5.4. Regions 81

ABI Software Book, Release 0.2-PMR@HARMONY

• Solution method

• Geometry (fibre?) field pointer

• Materials field pointer

• Source field pointer

• Dependent field pointer

• Analytic info pointer(Analytic info stored in dependent field currently)

• Fixed conditions

• Equations pointer

fieldEquationssets-structure.JPG

Equations

Equation holds the matrices and mapping information.

The Field variable to matrix mappings maps each field variable onto the equations matrices or RHS vector.

e.g. Laplace(FEM): 2 variables, 1 component fieldEquationsetsEquations-mappingFEM.JPG

e.g. Laplace(BEM): 2 variables, 1 component fieldEquationsetsEquations-mappingBEM.JPG

e.g. Heat equation(explicit time/FEM space): 2 variables, 1 component fieldEquationsetsEquations-
mappingHeat.JPG

TODO matrix distribution

Equations has the following attributes:

• Equation set pointer

• Finished tag

• Output type

• Sparsity type

• Interpolation pointer

• Linear equation data pointer

• Nonlinear equation data pointer

• Time(non-static) data pointer

• Equations mapping pointer

• Equations Matrices

Problems

A problem has a number of solutions (each with their solver) inside a problem control loop. Problem is associated
with region via solution which maps to equations sets and hence links to region. Multiple problems can be in the
same region, or multiple regions can work to solve one problem.

Problem has the following attributes:

• User number

• Global number

• Finished tag

• Class

82 Chapter 5. OpenCMISS user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

• Type

• Subtype

• Control pointer

• Number of solutions

• Solutions pointer

problem_structure.JPG

Solutions

Solution has the following attributes:

• Solution number

• Finished tag

• Linear solution data pointer

• Nonlinear solution data pointer

• Time (non-static) solution data pointer

• Equations set to add (the next equations set to add)

• Index of added equations set(the last successfully added equations set)

• Solution mapping(which contains equations sets)

• Solver pointer

Solvers

Solver has the following attributes:

• Solution pointer

• Finished tag

• Solve type

• Output type

• Sparsity type

• Linear solver pointer

• Non-linear solver pointer

• Time integrationn solver pointer

• Eigenproblem solver pointer

• Solver matrices

problemSolutionSolver_structure.JPG

Control

Control has the following attributes:

• Problem pointer

• Finished tag

• Control type

5.5. Problems 83

ABI Software Book, Release 0.2-PMR@HARMONY

Getting started with OpenCMISS

Tutorial one.

Using OpenCMISS from Python

Section author: Adam Reeve

In this tutorial we will walk through how to solve Laplace’s equation on a 2D geometry using the Python bindings
to OpenCMISS.

Getting Started

The Python code given here follows the Python Laplace example found in the OpenCMISS examples repository.
You can run the code interactively by entering it directly into the Python interpreter, which can be started by
running python. Alternatively you can enter the code into a text file with a .py extension and run it using the
python command, eg:

python LaplaceExample.py

In order to use OpenCMISS we have to first import the CMISS module from the opencmiss package:

from opencmiss import CMISS

Assuming OpenCMISS has been correctly built with the Python bindings by following the instructions in the
programmer documentation, we can now access all the OpenCMISS functions, classes and constants under the
CMISS namespace.

Create a Coordinate System

First we construct a coordinate system that will be used to describe the geometry in our problem. The 2D geometry
will exist in a 3D space, so we need a 3D coordinate system.

When creating an object in OpenCMISS there are at least three steps. First we initialise the object:

coordinateSystem = CMISS.CoordinateSystem()

This creates a thin wrapper that just points to the actual coordinate system used internally by OpenCMISS, and
initially the pointer is null. Trying to use the coordinate system now would raise an exception. To actually
construct a coordinate system we call the CreateStart method and pass it a user number. The user number
must be unique between objects of the same type and can be used to identify the coordinate system later. Most
OpenCMISS classes require a user number when creating them, and many also require additional parameters to
the CreateStart method:

coordinateSystemUserNumber = 1
coordinateSystem.CreateStart(coordinateSystemUserNumber)

We can now optionally set any properties on the object. We will set the dimension so that the coordinate system
is 3D:

coordinateSystem.dimension = 3

And finally, we finish creating the coordinate system:

coordinateSystem.CreateFinish()

84 Chapter 5. OpenCMISS user documentation

https://github.com/OpenCMISS/examples/blob/master/ClassicalField/Laplace/Laplace/Python/LaplaceExample.py
http://cmiss.bioeng.auckland.ac.nz/OpenCMISS/doc/programmer/

ABI Software Book, Release 0.2-PMR@HARMONY

Create a Region

Next we create a region that our fields will be defined on and tell it to use the 3D coordinate system we created
previously. The CreateStart method for a region requires another region as a parameter. We use the world
region that is created by default so that our region is a subregion of the world region. We can also give the region
a label:

regionUserNumber = 1
region = CMISS.Region()
region.CreateStart(regionUserNumber, CMISS.WorldRegion)
region.label = "LaplaceRegion"
region.coordinateSystem = coordinateSystem
region.CreateFinish()

Create a Basis

The finite element description of our fields requires a basis function to interpolate field values over elements, so
we create a 2D basis with linear Lagrange interpolation in both xi directions:

basisUserNumber = 1
basis = CMISS.Basis()
basis.CreateStart(basisUserNumber)
basis.type = CMISS.BasisTypes.LAGRANGE_HERMITE_TP
basis.numberOfXi = 2
basis.interpolationXi = [

CMISS.BasisInterpolationSpecifications.LINEAR_LAGRANGE,
CMISS.BasisInterpolationSpecifications.LINEAR_LAGRANGE,

]
basis.quadratureNumberOfGaussXi = [2, 2]
basis.CreateFinish()

When we set the basis type we select a value from the BasisTypes enum. To get a list of possible basis types
and interpolation types you can use the help function in the python interpreter:

help(CMISS.BasisTypes)
help(CMISS.BasisInterpolationSpecifications)

Similarly, you can see what methods and properties are available for the various CMISS classes and get help
information for these:

help(CMISS.Basis)
help(CMISS.Basis.CreateStart)
help(CMISS.Basis.interpolationXi)

Create a Decomposed Mesh

In order to define a simple 2D geometry for our problem we can use one of OpenCMISS’s inbuilt generated
meshes. We will create a 2D, rectangular mesh with 10 elements in both the x and y directions and tell it to use
the basis we created previously:

generatedMeshUserNumber = 1
numberGlobalXElements = 10
numberGlobalYElements = 10
width = 1.0
length = 1.0

generatedMesh = CMISS.GeneratedMesh()
generatedMesh.CreateStart(generatedMeshUserNumber, region)
generatedMesh.type = CMISS.GeneratedMeshTypes.REGULAR

5.7. Using OpenCMISS from Python 85

ABI Software Book, Release 0.2-PMR@HARMONY

generatedMesh.basis = [basis]
generatedMesh.extent = [width, length, 0.0]
generatedMesh.numberOfElements = [

numberGlobalXElements,
numberGlobalYElements]

When setting the basis property, we assign a list of bases as we might want to construct a mesh with multiple
components using different interpolation schemes.

The generated mesh is not itself a mesh, but is used to create a mesh. We construct the mesh when we call the
CreateFinish method of the generated mesh and pass in the mesh to generate:

meshUserNumber = 1
mesh = CMISS.Mesh()
generatedMesh.CreateFinish(meshUserNumber, mesh)

Here we have initialised a mesh but not called CreateStart or CreateFinish, instead the mesh creation is
done when finishing the creation of the generated mesh.

Because OpenCMISS can solve problems on multiple computational nodes, it must work with a decomposed
mesh. We now decompose our mesh by getting the number of computational nodes and creating a decomposition
with that number of domains:

decompositionUserNumber = 1
decomposition = CMISS.Decomposition()
decomposition.CreateStart(decompositionUserNumber, mesh)
decomposition.type = CMISS.DecompositionTypes.CALCULATED
decomposition.numberOfDomains = CMISS.ComputationalNumberOfNodesGet()
decomposition.CreateFinish()

Note that even when we have just one computational node, OpenCMISS still needs to work with a decomposed
mesh, which will have one domain.

Defining Geometry

Now that we have a decomposed mesh, we can begin defining the fields we need on it. First we will create a
geometric field to define our problem geometry:

geometricFieldUserNumber = 1
geometricField = CMISS.Field()
geometricField.CreateStart(geometricFieldUserNumber, region)
geometricField.meshDecomposition = decomposition
geometricField.ComponentMeshComponentSet(CMISS.FieldVariableTypes.U, 1, 1)
geometricField.ComponentMeshComponentSet(CMISS.FieldVariableTypes.U, 2, 1)
geometricField.ComponentMeshComponentSet(CMISS.FieldVariableTypes.U, 3, 1)
geometricField.CreateFinish()

The call to the ComponentMeshComponentSet method is not actually required here as all field components
will default to use the first mesh component, but if we have defined a mesh that has multiple components (that
use different interpolation schemes) then different field components can use different mesh components. For
example, in a finite elasticity problem we could define our geometry using quadratic Lagrange interpolation, and
the hydrostatic pressure using linear Lagrange interpolation.

We have created a field but all the field component values are currently set to zero. We can define the geometry
using the generated mesh we created earlier:

generatedMesh.GeometricParametersCalculate(geometricField)

86 Chapter 5. OpenCMISS user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Setting up Equations

Now we have a geometric field we can construct an equations set. This defines the set of equations that we wish
to solve in our problem on this region. The specific equation set we are solving is defined by the fourth, fifth and
sixth parameters to the CreateStart method. These are the equations set class, type and subtype respectively.
In this example we are solving the standard Laplace equation which is a member of the classical field equations
set class and the Laplace equation type. When we create an equations set we also have to create an equations set
field, however, this is only used to identify multiple equations sets of the same type on a region so we will not use
it:

equationsSetUserNumber = 1
equationsSetFieldUserNumber = 2
equationsSetField = CMISS.Field()
equationsSet = CMISS.EquationsSet()
equationsSet.CreateStart(equationsSetUserNumber, region, geometricField,

CMISS.EquationsSetClasses.CLASSICAL_FIELD,
CMISS.EquationsSetTypes.LAPLACE_EQUATION,
CMISS.EquationsSetSubtypes.STANDARD_LAPLACE,
equationsSetFieldUserNumber, equationsSetField)

equationsSet.CreateFinish()

Now we use our equations set to create a dependent field. This stores the solution to our equations:

dependentFieldUserNumber = 3
dependentField = CMISS.Field()
equationsSet.DependentCreateStart(dependentFieldUserNumber, dependentField)
equationsSet.DependentCreateFinish()

We haven’t used the Field.CreateStart method to construct the dependent field but have had it automati-
cally constructed by the equations set.

We can initialise our solution with a value we think will be close to the final solution. A field in OpenCMISS can
contain multiple field variables, and each field variable can have multiple components. For the standard Laplace
equation, the dependent field only has a U variable which has one component. Field variables can also have
different field parameter sets, for example we can store values at a previous time step in dynamic problems. In
this example we are only interested in the VALUES parameter set:

componentNumber = 1
initialValue = 0.5
dependentField.ComponentValuesInitialiseDP(

CMISS.FieldVariableTypes.U,
CMISS.FieldParameterSetTypes.VALUES,
componentNumber, initialValue)

Once the equations set is defined, we create the equations that use our fields to construct equations matrices
and vectors. We will use sparse matrices to store the equations and enable matrix output when assembling the
equations:

equations = CMISS.Equations()
equationsSet.EquationsCreateStart(equations)
equations.sparsityType = CMISS.EquationsSparsityTypes.SPARSE
equations.outputType = CMISS.EquationsOutputTypes.MATRIX
equationsSet.EquationsCreateFinish()

Defining the Problem

Now that we have defined all the equations we will need we can create our problem to solve. We create a standard
Laplace problem, which is a member of the classical field problem class and Laplace equation problem type:

5.7. Using OpenCMISS from Python 87

ABI Software Book, Release 0.2-PMR@HARMONY

problemUserNumber = 1
problem = CMISS.Problem()
problem.CreateStart(problemUserNumber)
problem.SpecificationSet(CMISS.ProblemClasses.CLASSICAL_FIELD,

CMISS.ProblemTypes.LAPLACE_EQUATION,
CMISS.ProblemSubTypes.STANDARD_LAPLACE)

problem.CreateFinish()

The problem type defines a control loop structure that is used when solving the problem. We may have multiple
control loops with nested sub loops, and control loops can have different types, for example load incremented loops
or time loops for dynamic problems. In this example a simple, single iteration loop is created without any sub
loops. If we wanted to access the control loop and modify it we would use the problem.ControlLoopGet
method before finishing the creation of the control loops, but we will just leave it with the default configuration:

problem.ControlLoopCreateStart()
problem.ControlLoopCreateFinish()

Configuring Solvers

After defining the problem structure we can create the solvers that will be run to actually solve our problem. The
problem type defines the solvers to be set up so we call problem.SolversCreatStart to create the solvers
and then we can access the solvers to modify their properties:

solver = CMISS.Solver()
problem.SolversCreateStart()
problem.SolverGet([CMISS.ControlLoopIdentifiers.NODE], 1, solver)
solver.outputType = CMISS.SolverOutputTypes.SOLVER
solver.linearType = CMISS.LinearSolverTypes.ITERATIVE
solver.linearIterativeAbsoluteTolerance = 1.0e-10
solver.linearIterativeRelativeTolerance = 1.0e-10
problem.SolversCreateFinish()

Note that we initialised a solver but didn’t create it directly by calling its CreateStart method, it was created
with the call to SolversCreateStart and then we obtain it with the call to SolverGet. If we look at the
help for the SolverGet method we see it takes three parameters:

controlLoopIdentifiers A list of integers used to identify the control loop to get a solver for. This always starts
with the root control loop, given by CMISS.ControlLoopIdentifiers.NODE. In this example we
only have the one control loop and no sub loops.

solverIndex The index of the solver to get, as a control loop may have multiple solvers. In this case there is only
one solver in our root control loop.

solver An initialised solver object that hasn’t been created yet, and on return it will be the solver that we asked
for.

Once we’ve obtained the solver we then set various properties before finishing the creation of all the problem
solvers.

After defining our solver we can create the equations for the solver to solve by adding our equations sets to the
solver equations. In this example we have just one equations set to add but for coupled problems we may have
multiple equations sets in the solver equations. We also tell OpenCMISS to use sparse matrices to store our solver
equations:

solverEquations = CMISS.SolverEquations()
problem.SolverEquationsCreateStart()
solver.SolverEquationsGet(solverEquations)
solverEquations.sparsityType = CMISS.SolverEquationsSparsityTypes.SPARSE
equationsSetIndex = solverEquations.EquationsSetAdd(equationsSet)
problem.SolverEquationsCreateFinish()

88 Chapter 5. OpenCMISS user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Setting Boundary Conditions

The final step in configuring the problem is to define the boundary conditions to be satisfied. We will set the
dependent field value at the first node to be zero, and at the last node to be 1.0. These nodes will correspond to
opposite corners in our geometry. Because OpenCMISS can solve our problem on multiple computational nodes
where each computational node does not necessarily know about all nodes in our mesh, we must first check that
the node we are setting the boundary condition at is in our computational node domain:

nodes = CMISS.Nodes()
region.NodesGet(nodes)
firstNodeNumber = 1
lastNodeNumber = nodes.numberOfNodes
firstNodeDomain = decomposition.NodeDomainGet(firstNodeNumber, 1)
lastNodeDomain = decomposition.NodeDomainGet(lastNodeNumber, 1)
computationalNodeNumber = CMISS.ComputationalNodeNumberGet()

boundaryConditions = CMISS.BoundaryConditions()
solverEquations.BoundaryConditionsCreateStart(boundaryConditions)
if firstNodeDomain == computationalNodeNumber:

boundaryConditions.SetNode(
dependentField, CMISS.FieldVariableTypes.U,
1, 1, firstNodeNumber, 1,
CMISS.BoundaryConditionsTypes.FIXED, 0.0)

if lastNodeDomain == computationalNodeNumber:
boundaryConditions.SetNode(

dependentField, CMISS.FieldVariableTypes.U,
1, 1, lastNodeNumber, 1,
CMISS.BoundaryConditionsTypes.FIXED, 1.0)

solverEquations.BoundaryConditionsCreateFinish()

When setting a boundary condition at a node we can use either the AddNode method or the SetNode method.
Using AddNode will add the value we provide to the current field value and set this as the boundary condition
value, but here we want to directly specify the value so we use the SetNode method.

The arguments to the SetNode method are the field, field variable type, node version number, node user number,
node derivative number, field component number, boundary condition type and boundary condition value. The
version and derivative numbers are one as we aren’t using versions and we are setting field values rather than
derivative values. We can also only set derivative boundary conditions when using a Hermite basis type. There
are a wide number of boundary condition types that can be set but many are only available for certain equation set
types and in this example we simply want to fix the field value.

When solverEquations.BoundaryConditionsCreateFinish() is called OpenCMISS will con-
struct the solver matrices and vectors.

Solving

After our problem solver equations have been fully defined we are now ready to solve our problem. When we
call the Solve method of the problem it will loop over the control loops and control loop solvers to solve our
problem:

problem.Solve()

Exporting the Solution

Once the problem has been solved, the dependent field contains the solution to our problem. We can then export
the dependent and geometric fields to a FieldML file so that we can visualise the solution using cmgui. We will
export the geometric and dependent field values to a LaplaceExample.xml file. Separate plain text data files
will also be created:

5.7. Using OpenCMISS from Python 89

ABI Software Book, Release 0.2-PMR@HARMONY

baseName = "laplace"
dataFormat = "PLAIN_TEXT"
fml = CMISS.FieldMLIO()
fml.OutputCreate(mesh, "", baseName, dataFormat)
fml.OutputAddFieldNoType(

baseName + ".geometric", dataFormat, geometricField,
CMISS.FieldVariableTypes.U, CMISS.FieldParameterSetTypes.VALUES)

fml.OutputAddFieldNoType(
baseName + ".phi", dataFormat, dependentField,
CMISS.FieldVariableTypes.U, CMISS.FieldParameterSetTypes.VALUES)

fml.OutputWrite("LaplaceExample.xml")
fml.Finalise()

Using CellML in OpenCMISS

The aim of this tutorial is to give the user a bit of help in using CellML models in OpenCMISS.
OpenCMISS(cellml) is the code that provides the mapping from OpenCMISS(cm) (Fortran) to the CellML API
(C++). The API exposed by the OpenCMISS(cellml) library is then wrapped by the OpenCMISS(cm) API,
with documentation available in the OpenCMISS programmer documentation. The programmer documenta-
tion provides the reference documentation for the OpenCMISS(cm) routines which are described in this tu-
torial. The monodomain example from the OpenCMISS examples repository provides a good demonstration
of OpenCMISS+CellML in practice, while the CellML examples are used to perform functional testing of the
OpenCMISS(cellml) library.

Overview

OpenCMISS encapsulates all interaction with CellML models within a CellML environment. A CellML environ-
ment is specific to a region, but each region may contain zero or more CellML environments. Having created a
CellML environment you are then able to import CellML models into the environment. Each CellML environment
may import an arbitrary number of CellML models. [TODO: what is a use-case for multiple CellML environments
in a region?]

Variables in CellML models imported into a CellML environment are then able to flagged as known or wanted as
desired by the user. Flagged variables are made available by the CellML environment for mapping to OpenCMISS
fields, either for obtaining values from the CellML model (wanted) or setting values in the CellML model (known).

In order for the CellML environment to mange the computation of a CellML model, each environment requires
the user to provide several fields suitable for such usage. These are the models, state, intermediate, and param-
eters fields. Typically the user will pass in empty fields and allow the CellML environment to create the fields
appropriately.

With all desired fields set-up appropriately, the user then just needs to add their CellML environment(s) to the
corresponding solver as part of their control loop set-up when defining the actual problem to solve.

The CellML environment

The OpenCMISS type for the CellML environment is CMISSCellMLType. As with most OpenCMISS types,
a user-number is provided to uniquely identify this CellML environment to the user. The basic creation block is
given below.

! declare the user number for the CellML environment we want to create
INTEGER(CMISSIntg), PARAMETER :: CellMLUserNumber=10
! and the actual handle for the CellML environment
TYPE(CMISSCellMLType) :: CellML

! We first initialise the CellML environment
CALL CMISSCellML_Initialise(CellML,Err)

90 Chapter 5. OpenCMISS user documentation

https://github.com/OpenCMISS/cellml
http://cellml-api.sourceforge.net
http://cmiss.bioeng.auckland.ac.nz/OpenCMISS/doc/programmer/
https://github.com/OpenCMISS/examples/blob/master/Bioelectrics/Monodomain/src/MonodomainExample.f90
https://github.com/OpenCMISS/examples/blob/master/cellml

ABI Software Book, Release 0.2-PMR@HARMONY

! and then we are able to trigger the start of creation
CALL CMISSCellML_CreateStart(CellMLUserNumber,Region,CellML,Err)

! import models

! flag variables

! terminate the creation process
CALL CMISSCellML_CreateFinish(CellML,Err)

It is important to note that all required models must be imported and all desired variables flagged before terminat-
ing the CellML environment creation process. This is because the create finish method will proceed to make use of
OpenCMISS(cellml) to instantiate each of the imported CellML models into executable code, and the generation
of that executable code requires all knowledge of the flagged variables.

Models are imported into the CellML environment with the code shown below.

INTEGER(CMISSIntg) :: modelIndex

! Import the specified model into the CellML environment
CALL CMISSCellML_ModelImport(CellML,"model.xml",modelIndex,Err)

In this example, the CellML model model.xml is imported into the CellML environment and on successful
return the variable modelIndex will be set to the index for this specific model in the CellML environment.
The CellML model to import is specified by URL, and can be either absolute (e.g., http://example.com/
coolest/model/ever.xml) or relative (e.g., coolest/model/ever.xml). If a relative URL is speci-
fied, it will be resolved relative to the current working directory (CWD) of the executed application. (It is antic-
ipated that application developers would use their own logic to provide absolute URLs to define CellML models
in OpenCMISS.)

Flagging variables

As mentioned above, all variables of interest in the imported CellML models must be flagged prior to terminating
the CellML environment creation process. Variables in CellML models can be flagged as either known or wanted.
Flagging variables in a model will inform OpenCMISS(cellml) that the given variable(s) need to be available for
use by OpenCMISS(cm), and hence the executable code generated when the models are instantiated is required to
provide this access. The process for flagging variables is shown below.

! Flag a variable as known
CALL CMISSCellML_VariableSetAsKnown(CellML,modelIndex,"fast_sodium_current/g_Na ",
→˓Err)
! Flag a variable as wanted
CALL CMISSCellML_VariableSetAsWanted(CellML,modelIndex,"membrane/i_K1",Err)

Details on how to identify specific variables in a CelLML model are given below. The modelIndex should be
the index of the desired model in the CellML environment, as returned by the model import described above.

Flagging a variable as known indicates that the OpenCMISS user wants to control the value of the specified
variable, thus taking ownership of the variable from the CellML model. Currently, only CONSTANT variables in
CellML models can be flagged as known (see the Variable Evaluation Types in the CellML API documentation).
This is typically used when parameters in the CellML model are to have their values defined by OpenCMISS
fields.

Flagging a variable as wanted indicates that the OpenCMISS user wants to obtain the value of the specified variable
from the CellML model. Currently, CONSTANT, PSEUDOSTATE_VARIABLE, and ALGEBRAIC variables in
CellML models can be flagged as wanted (see the Variable Evaluation Types in the CellML API documentation).
In order to be able to save the state of CellML models during integration steps, all state variables in models
are automatically flagged as wanted. Depending on how the CellML model is being applied in the OpenCMISS
simulation, variables that are considered CONSTANT by the CelLML API will actually be the variables of interest

5.8. Using CellML in OpenCMISS 91

http://cellml-api.sourceforge.net/1.12/namespacecellml__services.html#a572d2854ecc95d68471347241a678c8f
http://cellml-api.sourceforge.net/1.12/namespacecellml__services.html#a572d2854ecc95d68471347241a678c8f

ABI Software Book, Release 0.2-PMR@HARMONY

to the OpenCMISS user - commonly the case for mechanical constitutive relationships where the wanted strain
energy components are algebraically related to the known strain components.

Identifying CellML variables

When identifying variables from CellML models in OpenCMISS, the convention is to address them with a string
consisting of the variable’s name and the name of the parent component. Given the following (invalid!) CellML
model,

<model>
<import href="http://models.cellml.org/bob/model.xml">
<component name="imported_component" component_ref="source_component"/>

</import>
<component name="membrane">
<variable name="i_K1"/>
<variable name="i_stimulus"/>
<variable name="T"/>

</component>
<component name="temperature">
<variable name="temperature" units="K" initial_value="310.0" public_interface=

→˓"out"/>
</component>
<connection>
<map_components component_1="membrane" component_2="temperature"/>
<map_variables variable_1="T" variable_2="temperature"/>

</connection>
</model>

the i_K1 variable in the membrane component is identified with the string membrane/i_K1. Similarly,
membrane/i_stimulus identifies the stimulus current, membrane/T identifies the temperature variable in
the membrane component, and temperature/temperature identifies the temperature variable in the tem-
perature component. Due to the connection between the temperature variables in the membrane and temperature
components, membrane/T and temperature/temperature can be treated interchangeably. (Internally,
OpenCMISS(cellml) will always resolve variable references to the source variable and hence membrane/T will
resolve to temperature/temperature.) Given the rules for naming CellML components and variables,
these identifier strings are guaranteed to be unique for a specified model.

Using this method to identify variables in CellML models, it is not possible to address variables which are
not described in the top-level model being imported into the OpenCMISS CellML environment. For example,
the above CellML model imports the component source_component from the model http://models.
cellml.org/bob/model.xml but the variables in that component are not available to the OpenCMISS
user unless they are connected to variables in the model (i.e., there are connections that map the component
imported_component to the component membrane or temperature in the above model).

Mapping between variables and fields

TODO: This section needs some checking and filling out!

CellML model variables which have been flagged (see above) are able to be mapped to components of
OpenCMISS fields. CellML variables which are mapped from OpenCMISS field components will have their
value updated from the field at each DOF prior to evaluation of the CellML model. OpenCMISS field compo-
nents which are mapped from CellML variables will trigger evaluation of the CellML model(s) associated with
the requested DOF.

The basic mapping process is as follows.

! Start the creation of CellML <--> OpenCMISS field maps
CALL CMISSCellML_FieldMapsCreateStart(CellML,Err)

! and set up the field variable component <--> CellML model variable mappings.

92 Chapter 5. OpenCMISS user documentation

http://cellml-api.sourceforge.net/1.12/interfacecellml__api_1_1_cell_m_l_variable.html#a205169a627dc9ff691897cacc6119b1c

ABI Software Book, Release 0.2-PMR@HARMONY

! Map the first component of the dependent field to the membrane potential in the
→˓CellML model
CALL CMISSCellML_CreateFieldToCellMLMap(CellML,DependentField,CMISS_FIELD_U_
→˓VARIABLE_TYPE,1,CMISS_FIELD_VALUES_SET_TYPE, &
& modelIndex,"membrane/Vm",CMISS_FIELD_VALUES_SET_TYPE,Err)

! and the reverse mapping
CALL CMISSCellML_CreateCellMLToFieldMap(CellML,modelIndex,"membrane/Vm",CMISS_
→˓FIELD_VALUES_SET_TYPE, &
& DependentField,CMISS_FIELD_U_VARIABLE_TYPE,1,CMISS_FIELD_VALUES_SET_TYPE,Err)

! Finish the creation of CellML <--> OpenCMISS field maps
CALL CMISSCellML_FieldMapsCreateFinish(CellML,Err)

For a mechanical constitutive application, the mapping may look more like

!Start the creation of CellML <--> OpenCMISS field maps
CALL CMISSCellML_FieldMapsCreateStart(CellML,Err)
!Now we can set up the field variable component <--> CellML model variable
→˓mappings.
!Map the strain components from OpenCMISS fields to the CellML model
CALL CMISSCellML_CreateFieldToCellMLMap(CellML,DependentField,CMISS_FIELD_U1_
→˓VARIABLE_TYPE,1,CMISS_FIELD_VALUES_SET_TYPE, &
& MooneyRivlinModelIndex,"equations/E11",CMISS_FIELD_VALUES_SET_TYPE,Err)

CALL CMISSCellML_CreateFieldToCellMLMap(CellML,DependentField,CMISS_FIELD_U1_
→˓VARIABLE_TYPE,2,CMISS_FIELD_VALUES_SET_TYPE, &
& MooneyRivlinModelIndex,"equations/E12",CMISS_FIELD_VALUES_SET_TYPE,Err)

CALL CMISSCellML_CreateFieldToCellMLMap(CellML,DependentField,CMISS_FIELD_U1_
→˓VARIABLE_TYPE,3,CMISS_FIELD_VALUES_SET_TYPE, &
& MooneyRivlinModelIndex,"equations/E13",CMISS_FIELD_VALUES_SET_TYPE,Err)

CALL CMISSCellML_CreateFieldToCellMLMap(CellML,DependentField,CMISS_FIELD_U1_
→˓VARIABLE_TYPE,4,CMISS_FIELD_VALUES_SET_TYPE, &
& MooneyRivlinModelIndex,"equations/E22",CMISS_FIELD_VALUES_SET_TYPE,Err)

CALL CMISSCellML_CreateFieldToCellMLMap(CellML,DependentField,CMISS_FIELD_U1_
→˓VARIABLE_TYPE,5,CMISS_FIELD_VALUES_SET_TYPE, &
& MooneyRivlinModelIndex,"equations/E23",CMISS_FIELD_VALUES_SET_TYPE,Err)

CALL CMISSCellML_CreateFieldToCellMLMap(CellML,DependentField,CMISS_FIELD_U1_
→˓VARIABLE_TYPE,6,CMISS_FIELD_VALUES_SET_TYPE, &
& MooneyRivlinModelIndex,"equations/E33",CMISS_FIELD_VALUES_SET_TYPE,Err)

! Map the material parameters - if any

! Map the stress components from the CellML model to the OpenCMISS dependent field
CALL CMISSCellML_CreateCellMLToFieldMap(CellML,MooneyRivlinModelIndex,"equations/
→˓Tdev11",CMISS_FIELD_VALUES_SET_TYPE, &
& DependentField,CMISS_FIELD_U2_VARIABLE_TYPE,1,CMISS_FIELD_VALUES_SET_TYPE,Err)

CALL CMISSCellML_CreateCellMLToFieldMap(CellML,MooneyRivlinModelIndex,"equations/
→˓Tdev12",CMISS_FIELD_VALUES_SET_TYPE, &
& DependentField,CMISS_FIELD_U2_VARIABLE_TYPE,2,CMISS_FIELD_VALUES_SET_TYPE,Err)

CALL CMISSCellML_CreateCellMLToFieldMap(CellML,MooneyRivlinModelIndex,"equations/
→˓Tdev13",CMISS_FIELD_VALUES_SET_TYPE, &
& DependentField,CMISS_FIELD_U2_VARIABLE_TYPE,3,CMISS_FIELD_VALUES_SET_TYPE,Err)

CALL CMISSCellML_CreateCellMLToFieldMap(CellML,MooneyRivlinModelIndex,"equations/
→˓Tdev22",CMISS_FIELD_VALUES_SET_TYPE, &
& DependentField,CMISS_FIELD_U2_VARIABLE_TYPE,4,CMISS_FIELD_VALUES_SET_TYPE,Err)

CALL CMISSCellML_CreateCellMLToFieldMap(CellML,MooneyRivlinModelIndex,"equations/
→˓Tdev23",CMISS_FIELD_VALUES_SET_TYPE, &
& DependentField,CMISS_FIELD_U2_VARIABLE_TYPE,5,CMISS_FIELD_VALUES_SET_TYPE,Err)

CALL CMISSCellML_CreateCellMLToFieldMap(CellML,MooneyRivlinModelIndex,"equations/
→˓Tdev33",CMISS_FIELD_VALUES_SET_TYPE, &
& DependentField,CMISS_FIELD_U2_VARIABLE_TYPE,6,CMISS_FIELD_VALUES_SET_TYPE,Err)

!Finish the creation of CellML <--> OpenCMISS field maps

5.8. Using CellML in OpenCMISS 93

ABI Software Book, Release 0.2-PMR@HARMONY

CALL CMISSCellML_FieldMapsCreateFinish(CellML,Err)

CellML fields

The required fields and what you might want to do with them...

Evaluating CellML fields

Do we want to describe how simple algebraic-type evaluation can be done independently of the whole
solver/problem/equation set thingy? is that even possible?

Adding CellML models to your Problem set-up

Really need a better title! Explain how CellML environments get added into control loops, etc. so that they get
computed along with the rest of the model when performing a simulation.

Miscellaneous utilities

Collect all the other bits and pieces here? these are typically the OpenCMISS(cellml) functions that are used
internally by OpenCMISS(cm) but maybe should be (and are?) exposed via the OpenCMISS(cm) API?

OpenCMISS tutorial videos

Videos of OpenCMISS tutorials.

MPI tutorial 31 January 2012 Chris Bradley

CUDA tutorial 1 17 February 2012 Chris Bradley

CUDA tutorial 2 24 February 2012 Chris Bradley

OpenMP tutorial 16 March 2012 Chris Bradley

Contact Mechanics tutorial 17 August 2012 Nancy Yan

Bidomain tutorial

**

Tutorial: Version Control With Git

Section author: Adam Reeve

Getting Started

If Git isn’t installed already, it can be installed from the git-core package if you’re using Linux or by downloading
msysGit for Windows.

The first thing that must be done before using Git is to tell it your name and email address. These will be associated
with any commits you make:

git config --global user.name "Adam Reeve"
git config --global user.email "aree035@aucklanduni.ac.nz"

94 Chapter 5. OpenCMISS user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

If you are using a graphical Git client such as Tortoise Git on Windows or gitg on Linux there will be an option to
edit these settings.

Creating a Repository

You can initialise a new Git repository in an existing directory with:

git init

Or to create a new directory:

git init my_project

Cloning an Existing Repository

You can clone an existing repository from a local path or from a URL. To clone the repository for this tutorial,
run:

git clone https://github.com/adamreeve/git_tutorial.git

This will create a git_tutorial directory in your current directory, so change into that directory now:

cd git_tutorial

Have a look at the project history on the master branch with:

git log

Also try out some of the options to the log command:

git log --patch
git log --stat
git log --oneline --graph --all

The last example uses the “–all” option to show history in all branches.

Making and Committing Changes

Run git status and you should get a message that there are no changes to be staged and no staged changes to
be committed.

Now make a change to the hello.py file and run git status again. You should see that you still have no
changes staged to commit but you have an unstaged change.

Run git diff go see what changes you have made. Now add your change to the staging area:

git add hello.py

And run git status again. You will see that there are no unstaged changes but one file has changes that are
staged.

Now run git diff and there should be no changes. This is because git diff compares your working
directory with the staging area by default. To see what changes are in the staging area and would be committed,
run:

git diff --cached

If you’ve decided that you no longer want to commit a change that you’ve added to the staging area, you’ll need
to unstage that file by running:

5.10. Tutorial: Version Control With Git 95

ABI Software Book, Release 0.2-PMR@HARMONY

git reset HEAD hello.py

Note: git tells you how to stage and unstage changes in the output of the git status command.

If you then decide that your change is rubbish and you want to remove it completely, you can checkout a clean
version of the changed file:

git checkout -- hello.py

The “–” before the file path isn’t required but is recommended as it means that any further command options are
file paths, which prevents confusion when you have a file named the same as a branch (as git checkout is
also used for checking out a branch, as you’ll see later).

Now make another change and add it to the staging area, then commit it:

git commit -m "My awesome change"

You can either specify a commit message on the command line with the “-m” option or if you leave that option off,
git will open a text editor to allow you to enter a message. By default this is vim, but you might want to change it
to something else. For example, if you’re on Linux:

git config --global core.editor "gedit"

Or if you’re on Windows and have TortoiseGit installed, you can use:

git config --global core.editor "notepad2"

Now make another change to the file and then add this change to the staging area, then run:

git commit --amend

The amend option lets you update the previous commit. It will also open the editor to let you update the commit
message if required. This is useful if you realise you’ve made a small mistake in the previous commit and haven’t
yet pushed it to a public repository.

Note: The commit hash changes after you amend it. This is now a different commit to the one before, so the hash
has changed.

Now we’ll try using git’s graphical interface for making a commit. Make a change to hello.py then run:

git gui

Stage the change you made then make another commit.

Branches

It’s always a good idea to create a new branch for any new feature you’re working on in a project:

git branch new_feature

This will create a new branch that points to the commit you have currently checked out. You can also specify which
commit the new branch should point to. For example, to create a new branch that points to the same commit as
the master branch:

git branch another_feature master

To delete a branch:

96 Chapter 5. OpenCMISS user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

git branch -d another_feature

This will give an error if the branch hasn’t been merged into another branch.

Now checkout the branch you created. If there are any differences between your previous head commit and the
branch you are checking out, your working directory will be updated:

git checkout new_feature

You can create a new branch and check it out in one go by using the “-b” option to the checkout command:

git checkout -b my_feature

Now make some changes and commit them on your new branch. You can see a list of branches and the branch
you’re on at any time by running:

git branch

Have a look at the history of your branch and the position of other branches by running gitk.

Merging and Resolving Conflicts

Now we will practice merging one branch into another branch. We will create a new local branch that matches
the “merge_into” branch from the origin repository, and merge in the “merge_from” branch. First create the local
branch you will work on:

git checkout -b merge_into origin/merge_into

Now run:

gitk --all

This will show a tree with commits from all branches. Note where the heads of the merge_from, ori-
gin/merge_from and origin/merge_into branches are.

Now merge the origin/merge_from branch:

git merge origin/merge_from

And look at the result of your merge:

gitk --all

Now we will try another merge, but this time there will be a conflict:

git checkout -b merge_conflict origin/merge_conflict
gitk --all
git merge origin/conflicting

Read the output of the merge command to note that there is a conflict in the hello.py file. Also run git
status. When you have conflicts in multiple files you can keep track of which conflicts have been resolved with
the status command. Open that file in your editor and resolve the conflict. Then mark the conflict as resolved by
adding the file:

git add hello.py

And now you have to manually make a merge commit:

git commit -m "Merge conflicting branch"

5.10. Tutorial: Version Control With Git 97

ABI Software Book, Release 0.2-PMR@HARMONY

Remotes and Remote Branches

As you originally cloned this repository, you have one remote repository set up already called “origin”. To list the
remote repositories you’ve added with their urls:

git remote -v

Branches on a remote repository can be checked out or referred to in other commands by prefixing them with the
remote name. For example, to show the head commit of the master branch on the origin repository:

git show origin/master

To see all branches including those on remote repositories, you can use:

git branch -a

Staging Parts of Files

Most Git graphical interfaces allow you to stage only some changes in a file. From the Git command line you can
do this with the “–patch” or “-p” option to the add command. Change a line at the top of hello.py and then
make another change at the bottom. Now run:

git add -p hello.py

Say yes to adding the first change but no to the second change, then run git status, git diff, and then
git diff --cached.

Stashing Changes

Git’s stash command is useful for storing changes you have made that you want to save but don’t want to commit
yet. For example, you can stash changes and then switch to another branch and do some work, making commits,
then go to another branch and recover your stashed changes.

Run git status. You should have a change added to the staging area and another unstaged change from the
last section. Otherwise make a change to hello.py. Now stash those changes:

git stash

And look at what this has done:

git status
git stash list
git stash show -p stash@{0}

Your working directory and index should now be clean, but your change is safely stored away in the list of stashes.

Now pop your stashed change off the top of the stash list:

git stash pop
git status
git diff
git stash list

Your changes are now back in your working directory, and have been removed from the stash list.

Stash your change again to get a clean working directory:

git stash

Note that you can use git stash apply to apply a stashed change without removing it from the stash list,
and that you can also apply a stashed change on a different branch to the one it was made on.

98 Chapter 5. OpenCMISS user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Rewriting History

Git has powerful tools for allowing you to rearrange history so that you can clean up work to make the history
more clear. The most useful one to know is git rebase --interactive. Rebasing means to move a series
of commits onto a new base commit. You can also use the rebase command and keep the base the same, but still
edit and rearrange commits.

Checkout a new branch that points to the same commit as origin/rebase_me:

git checkout -b rebasing origin/rebase_me

We will rebase these commits onto the latest master branch. First have a look at what we will rebasing by
running gitk --all and looking at the origin/rebase_me branch, or git log -p origin/master..
rebasing.

Now start the interactive rebase:

git rebase --interactive origin/master

Reorder the commits so that the “Update docstring” commit is first and the “Fix typo” commit is squashed into
the “More excitement” commit.

Because you have squashed a commit, you will get the opportunity to change the message of the commit that was
squashed into. Think about whether you should update the original commit message to account for the change
that was squashed.

Run gitk to see what you’ve done.

Note that you can still access any rebased commits by their hash, and you can find the commits that you have
recently checked out with the git reflog command. This means that if you have committed something it’s
very hard to permanently lose that work.

More on Remotes

Create an account on GitHub if you don’t have one already, then fork this repository. Now make some changes
to this repository (if you can, make the tutorial better!) and push them to a branch on your remote repository. To
push you’ll first have to create an alias for your remote repository:

git remote add github https://<your_username>@github.com/<your_username>/git_
→˓tutorial.git

Where “<your_username>” has been replaced with your GitHub username. Now to push your changes to your
remote repository:

git push github <name_of_branch>

Now on the web page for your fork of the git_tutorial repository, click on the pull request button and follow the
steps to create a new pull request.

• genindex

• search

Laplace examples

42 master

For testing

5.11. Laplace examples 99

ABI Software Book, Release 0.2-PMR@HARMONY

Analytic Laplace

For testing

Laplace ellipsoid

For testing

Laplace Python

For testing

Laplace

For testing

Laplace C

For testing

Number Laplace

For testing

Parallel Laplace

For testing

100 Chapter 5. OpenCMISS user documentation

CHAPTER 6

PMR user documentation

The documentation found here is mainly aimed towards providing information to users of the Physiome Model
Repository. This includes users interested in obtaining and running models from the respository, and those who
wish to add models to the repository.

If you wish to deploy an instance of the repository software, PMR2, please see the buildout repository on GitHub.

PMR - an introduction

The Physiome Model Repository, PMR (Physiome Model Repository), includes the CellML and FieldML repos-
itories, and is powered by software called PMR2. PMR relies on the distributed version control system Mercurial
(Hg), which allows the repository to maintain a complete history of all changes made to every file contained within
repository workspaces. In order to use the Physiome Model Repository, you will need to obtain a Mercurial client
for your operating system, and become familiar with the basic functions of Mercurial. There are many excellent
resources available on the internet, such as Mercurial, the definitive guide. Mercurial clients may be downloaded
from the Mercurial website, which also provides documentation on Mercurial usage. A graphical alternative to a
command-line client is available for Windows, called TortoiseHg. This provides a Windows explorer integrated
system for working with Mercurial repositories.

Downloading and viewing models from the Physiome Model
Repository

There are several ways of obtaining and using models from the Physiome Model Repository, and which you
choose will depend on the way you intend to use the models. If you are simply interested in running a particular
model and viewing the output, you can use links found on model exposure pages to get hold of the model files.
There links available for a large number of models that will load the model directly into the OpenCell application,
allowing you to explore simulation results with the help of a model diagram.

If you intend to use the model for further work, for example saving changes to the model or creating a new model
based on an existing model or parts of an existing model, you should use Mercurial to obtain the files. In this
way you also obtain the complete revision history of the files, and can add to this history as you make your own
changes.

101

http://models.physiomeproject.org
http://models.physiomeproject.org
https://github.com/PMR2/pmr2.buildout
http://hgbook.red-bean.com/read/
http://mercurial.selenic.com/
http://tortoisehg.bitbucket.org/

ABI Software Book, Release 0.2-PMR@HARMONY

Searching the repository

The Physiome Model Repository has a basic search function that can be accessed by typing search terms into the
box at the top right hand side of the page. You can use keywords such as cardiac or insulin, author names,
or any other terms relevant to the models you want to find.

Fig. 6.1: The index page of the model repository provides two methods for finding models. There is a box
for entering search terms, or you can click on categories based on model keywords to see all models in those
categories.

If your search is yielding too many results, you may either try to narrow it down by choosing more or different
keywords (eg. goldbeter 1991 instead of just goldbeter), or you can click the Advanced Search link just
under the search box on the results page. This will take you to a search page where you can select specific item
types (eg. exposures or workspaces), statuses, and other specifics.

Once you have found the model you are interested in, there are several ways you can view or download it.

Viewing models via the respository web interface

The most common use of the Physiome Model Repository web interface is probably to view information about
models found on exposure pages, and to then download the models from these pages for simulation in a CellML
supporting application.

102 Chapter 6. PMR user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 6.2: In this search I have chosen to only have published exposures in my results.

6.2. Downloading and viewing models from the Physiome Model Repository 103

ABI Software Book, Release 0.2-PMR@HARMONY

Below is an example of a CellML exposure page. It contains documentation about the model(s), a diagram of the
what the model(s) represent, and a navigation pane that allows the user to select between available versions of the
model. Many models only have one version, but in this case there are two variants.

If you click on one of the model variant navigation links, you will be taken to a sub-page of the exposure which
will allow you to view the actual CellML model in a number of ways.

On this page there are a number of options under a Views available panel at the right hand side.

• Documentation - displays the model documentation, already visible in the main area of the exposure page.

• Model Metadata - displays information such as the citation information, model authorship details, and PMR
keywords.

• Model Curation - displays the curation stars for the model, also visible at the top right of the page. Future
additions to the curation system mean that there will be additional information to be displayed on this page.

• Mathematics - displays all the equations in the model in graphical form.

• Generated code - shows a page where you can view the model in a number of different languages; C,
C_IDA, Fortran 77, MATLAB, and Python. You can copy the generated code directly from this page to
paste into your code editor.

• Cite this model - this page provides generic information about how to cite models in the repository.

• Source View - provides a raw view of the CellML (XML) model code.

• Simulate using OpenCell - this link will download the model and open it with OpenCell if you have the
software installed. If the model has a session file, this will include an interactive diagram which can be
clicked on to display traces of the simulation results.

The OpenCell session that is loaded when clicking on the Simulate using OpenCell link looks something like this:

Obtaining models via Mercurial

CellML Model Repository tutorial

Section author: David Nickerson, Randall Britten, Dougal Cowan

About this tutorial

The CellML model repository is an instance of the Physiome Model Repository (PMR) customised for CellML
models. PMR currently relies on the distributed version control system Mercurial (Hg), which allows the reposi-
tory to maintain a complete history of all changes made to every file it contains. This tutorial demonstrates how
to work with the repository using TortoiseHg, which provides a Windows explorer integrated system for working
with Mercurial repositories.

Brief mention of the equivalent command line versions of the TortoiseHg
actions will also be mentioned, so that these ideas can also be used without
a graphical client, and on Linux and similar systems. These will be denoted
by boxes like this.

This tutorial requires you to have:

• A Mercurial client such as TortoiseHg or Mercurial installed

• The OpenCell CellML modelling environment

• A text editor such as Notepad++ or gedit

104 Chapter 6. PMR user documentation

http://www.cellml.org/tools/opencell/
http://tortoisehg.bitbucket.org/
http://mercurial.selenic.com/
http://www.cellml.org/tools/opencell
http://notepad-plus-plus.org/
http://projects.gnome.org/gedit/

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 6.3: An example of a CellML exposure page.

6.3. CellML Model Repository tutorial 105

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 6.4: An example of a CellML exposure sub-page.

106 Chapter 6. PMR user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 6.5: An OpenCell session. Objects such as membrane channels in the diagram can be clicked - this will toggle
the graph traces displaying the values for those objects.

6.3. CellML Model Repository tutorial 107

ABI Software Book, Release 0.2-PMR@HARMONY

PMR concepts

PMR and the CellML model repository use a certain amount of jargon - some is specific to the repository software,
and some is related to distributed version control systems (DVCSs). Below are basic explanations of some of these
terms as they apply to the repository.

Workspace A container (much like a folder or directory on your computer) to hold the files that make up a model,
as well as any other files such as documentation or metadata, etc. In practical terms, each workspace is a
Mercurial repository.

Exposure An exposure is a publicly viewable presentation of a particular revision of a model. An exposure can
present one or many files from your workspace, along with documentation and other information about your
model.

The Mercurial DVCS has a range of terms that are useful to know, and definitions of these terms can be found in
the Mercurial glossary: http://mercurial.selenic.com/wiki/Glossary.

Working with the repository web interface

This part of the tutorial will teach you how to find models in the Physiome model repository
(http://models.physiomeproject.org), how to view a range of information about those models, and how to down-
load models. The first page in the repository consists of basic navigation, a link to the main model listing, a search
box at the top right, and a list of model category links as shown below.

Fig. 6.6: The front page of the Physiome model repository.

Model listings

Clicking on the main model listing or any of the category listings will take you to a page displaying a list of
exposed models in that category. Click on electrophysiology for example, and a list of over 100 exposed models
in that category will be displayed, as shown here.

Clicking on an item in the list will take you to the exposure page for that model.

108 Chapter 6. PMR user documentation

http://mercurial.selenic.com/wiki/Glossary
http://models.physiomeproject.org

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 6.7: A list of models in the electrophysiology category.

Searching the repository

You can search for the model that you wish to work on by entering a search term in the box at the top right of
the page. Many of the models in the repository are named by the first author and publication date of the paper,
so a good search query might be something like goldbeter 1991. A list of the results of your search will probably
contain both workspaces and exposures - you will need to click on the workspace of the model you wish to work
on. Workspaces can be identified because their links are pale blue and have no details line following the clickable
link. In the following screenshot, the first two results are workspaces, and the remainder are exposures.

Fig. 6.8: A search results listing on the Physiome Model Repository site.

Click on an exposure result to view information about the model and to get links for downloading or simulating
the model. Click on workspaces to see the contents of the model workspace and the revision history of the model.

6.3. CellML Model Repository tutorial 109

ABI Software Book, Release 0.2-PMR@HARMONY

Working with the repository using Mercurial

This part of the tutorial will teach you how to clone a workspace from the model repository using a Mercurial
client, create your own workspace, and then push the cloned workspace into your new workspace in the repository.
We will be using a fork of an existing workspace, which provides you with a personal copy of a workspace that
you can edit and push changes to.

Registering an account and logging in

First, navigate to the staging instance of the Physiome model repository at http://184.169.251.126/welcome.

Note: The staging instance of the repository is a mirror of the main repository site found at http://models.
physiomeproject.org, running the latest development version of the PMR2 software.

Any changes you make to the contents of the staging instance are not permanent, and will be overwritten with the
contents of the main repository whenever the staging instance is upgraded to the latest PMR2 release. For this
reason, you can feel free to experiment and make mistakes when pushing to the staging instance.

In order to make changes to models in the CellML repository, you must first register for an account. The Log
in and Register links can be found near the top right corner of the page. Your account will have the appropriate
access privileges so that you can push any changes you have made to a model back into the repository.

Click on the Register link near the top right, and fill in the registration form. Enter your username and desired
password. After completing the email validation step, you can now log in to the repository.

Note: This username and password are also the credentials you use to interact with the repository via Mercurial.

Once logged in to the repository, you will notice that there is a new link in the navigation bar, My Workspaces.
This is where all the workspaces you create later on will be listed. The Log in and Register links are also replaced
by your username and a Log out link.

Mercurial username configuration

Important: Username setup for Mercurial

Since you are about to make changes, your name needs to be recorded as part of the workspace revision his-
tory. When commit your changes using Mercurial, it is initially “offline” and independent of the central PMR2
instance. This means that you have to set-up your username for the Mercurial client software, even though you
have registered a username on the PMR2 site.

You only need to do this once.

Steps for TortoiseHg:

• Right click on any file or folder in Windows Explorer, and select TortoiseHg → Global Settings.

• Select Commit and then enter your name followed by your e-mail address in “angle brackets” (i.e. less-
than “<” and greater-than “>”). Actually, you can enter anything you want here, but this is the accepted
best practice. Note that this information becomes visible publicly if the PMR2 instance that you push you
changes to is public.

Steps for command line:

• Edit the config text file:

– For per repository settings, the file in the repository: <repo>\.hg\hgrc

– System-wide settings for Linux: %USERPROFILE%\.hgrc

110 Chapter 6. PMR user documentation

http://184.169.251.126/welcome
http://models.physiomeproject.org
http://models.physiomeproject.org

ABI Software Book, Release 0.2-PMR@HARMONY

– System-wide settings for Windows: %USERPROFILE%\mercurial.ini

• Add the following entry:

[ui]
username = Firstname Lastname <firstname.lastname@example.net>

Forking an existing workspace

Important: It is essential to use a Mercurial client to obtain models from the repository for editing. The
Mercurial client is not only able to keep track of all the changes you make (allowing you to back-track if you
make any errors), but using a Mercurial client is the only way to add any changes you have made back into the
repository.

For this tutorial we will fork an existing workspace. This creates new workspace owned by you, containing a
copy of all the files in the workspace you forked including their complete history. This is equivalent to cloning
the workspace, creating a new workspace for yourself, and then pushing the contents of the cloned workspace into
your new workspace.

Forking a workspace can be done using the Physiome model repository web interface. The first step is to find
the workspace you wish to fork. We will use the Beeler, Reuter 1977 workspace which can be found at: http:
//184.169.251.126/workspace/beeler_reuter_1977.

Now click on the fork option in the toolbar, as shown below.

You will be asked to create a new ID for the workspace. Typically this is something like the existing workspace
name plus initials, a text tag that indicates the purpose of the fork, or some other short addition to the original
name. Create a fork called beeler_reuter_1977_username, for example. You will then be shown the
page for your forked workspace.

Cloning your forked workspace

In order to make changes to your workspace, you have to clone it to your own computer. In order to do this, copy
the URI for mercurial clone/pull/push as shown below:

6.3. CellML Model Repository tutorial 111

http://184.169.251.126/workspace/beeler_reuter_1977
http://184.169.251.126/workspace/beeler_reuter_1977

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 6.9: Copying the URI for cloning your workspace.

In Windows explorer, find the folder where you want to create the clone of the workspace. Then right click to
bring up the context menu, and select TortoiseHG → Clone as shown below:

Paste the copied URL into the Source: area and then click the Clone button. This will create a folder called
beeler_reuter_1977_tut that contains all the files and history of your forked workspace. The folder will
be created inside the folder in which you instigated the clone command.

Command line equivalent

hg clone [URI]

You will need to enter your username and password to clone the workspace, as the fork will be set to private when
it is created.

112 Chapter 6. PMR user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

The repository will be cloned within the current directory of your command line window.

Making changes to workspace contents

Your cloned workspace is now ready for you to edit the model file and make a commit each time you want to save
the changes you have made. As an example, open the model file in your text editor and remove the paragraph
which describes validation errors from the documentation section, as shown below:

Save the file. If you are using TortoiseHg, you will notice that the icon overlay has changed to a red exclamation
mark. This indicates that the file now has uncommitted changes.

Committing changes

If you are using TortoiseHg, bring up the shell menu for the altered file and select TortoiseHg → Hg Commit.
A window will appear showing details of the changes you are about to commit, and prompting for a commit
message. Every time you commit changes, you should enter a useful commit message with information about
what changes have been made. In this instance, something like “Removed the paragraph about validation errors
from the documentation” is appropriate.

Click on the Commit button at the far left of the toolbar. The icon overlay for the file will now change to a green
tick, indicating that changes to the file have been committed.

Command line equivalent

hg commit -m "Removed the paragraph about validation errors from the documentation"

6.3. CellML Model Repository tutorial 113

ABI Software Book, Release 0.2-PMR@HARMONY

Pushing changes to the repository

Your cloned workspace on your local machine now has a small history of changes which you wish to push into
the repository.

Right click on your workspace folder in Windows explorer, and select TortoiseHg → Hg Synchronize from the
shell menu. This will bring up a window from which you can manage changes to the workspace in the repository.
Click on the Push button in the toolbar, and enter your username and password when prompted.

Command line equivalent

hg push

Now navigate to your workspace and click on the history toolbar button. This will show entries under the Most
recent changes, complete with the commit messages you entered for each commit, as shown below:

114 Chapter 6. PMR user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Create an exposure

As explained earlier, an exposure aims to bring a particular revision to the attention of users who are browsing and
searching the repository.

There are two ways of making an exposure - creating a new exposure from scratch, or “Rolling over” an exposure.
Rolling over is used when a workspace already has an existing exposure, and the updates to the workspace have
not fundamentally changed the structure of the workspace. This means that all the information used in making
the previous exposure is still valid for making a new exposure of a more recent revision of the workspace. Strictly
speaking, an exposure can be rolled over to an older revision as well, but this is not the usual usage.

As you are working in a forked repository, you will need to create a new exposure from scratch. To learn how to
create exposures, please refer to Creating CellML exposures.

Creating CellML exposures

Section author: Dougal Cowan

CellML models in the Physiome Model Repository are presented through exposures. An exposure is a view of a
particular revision of a workspace, and is quite flexible in terms of what it can present. A workspace may contain
one or more models, and any number of models may be presented in a single exposure. Exposures generally take
the form of some documentation about the model(s), a range of ways of looking at the model(s) or their metadata,
and links to download the model(s).

The example below shows the main exposure page for the Bondarenko et al. 2004 workspace. This workspace
contains two models, which can be viewed via the Navigation pane on the right hand side of the page.

If you click on one of the model navigation links, it will take you to the page for that particular model. Ex-
posures most often present a single model, although they can present any number of models, each with its own
documentation and views.

Most of the CellML exposures in the repository are currently of this type, with a main documentation page
containing navigation links to the model or models themselves.

The model pages have links that enable the user to do things like view the model equations, look at the citation
information, or run the model as an interactive session using the OpenCell application. These links are found in
the pane titled Views available on the right hand side of the page.

This tutorial contains instructions on how to create one of these standard CellML exposures, as well as information
about how to create other alternative types of exposure.

Creating standard CellML exposures

Note: In order to create an exposure of a workspace, the workspace must be published. You will either need
to submit your workspace for publication and await review. It is not possible to create exposures in private
workspaces.

In this example I will use a fork of the the Beeler Reuter 1977 workspace. Creating a fork of a workspace creates a
clone of that workspace that you own, and can push changes to. You can fork any publicly available workspace in
the Physiome model repository. For more information on this feature of PMR, refer to the information on features
or collaboration, or see the relevant section of the tutorial.

At this point you will need to submit the workspace for publication, using the state: menu at the top right of the
workspace view page.

You will need to wait for your workspace to be made public before you can carry on and create an exposure of
your workspace.

6.4. Creating CellML exposures 115

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 6.10: Example of an exposure page

116 Chapter 6. PMR user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 6.11: Example of a model exposure page

Fig. 6.12: The state menu is used to submit objects such as workspaces for publication. Submitted items
will be reviewed by site administrators and then published.

6.4. Creating CellML exposures 117

ABI Software Book, Release 0.2-PMR@HARMONY

Choose the revision to expose

As an exposure is created to present a particular revision of a workspace, the first thing to do is to navigate to that
revision. To do this, first find the workspace - if this is your own workspace, you can click on the My Workspaces
button in the navigation bar of the repository and find the workspace of interest in the listing displayed. After
navigating to your workspace, click on the history button in the menu bar.

Fig. 6.13: The revision history of a fork of the Beeler Reuter 1977 workspace

Now you can select the revision of the workspace you wish to expose by clicking on the manifest of that revision.
Usually you will want to expose the latest revision, which appears at the top of the list.

After selecting the revision you wish to expose, click on the workspace actions menu at the far right end of the
menu bar and select create exposure.

Fig. 6.14: Selecting the manifest of the revision to expose

118 Chapter 6. PMR user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Building the exposure

Selecting the create exposure option in the menu bar will bring you to the first page of the exposure wizard. This
web interface allows you to select the model files, documentation files, and settings that will be used to create the
exposure.

The initial page of the exposure creation wizard allows you to select the main documentation file and the first model
file. Select the HTML annotator option and the HTML documentation file for the workspace in the Exposure main
view section. For the New Exposure File Entry section, choose the CellML file you wish to expose, and select
CellML as the file type.

Fig. 6.15: Selecting the main documentation and the first CellML model file

Note: Documentation should be written in HTML format. Some previous users of the CellML repository may be
familiar with the tmpdoc style documentation, which has be deprecated. For an example of what a fairly standard
HTML documentation file might look like, take a look at the documentation for the Beeler Reuter 1977 model.

Once you have selected the documentation and model files and their types, click on the Add button. This will take
you to the next step of the wizard, where you can select various options for the model you have chosen to expose,
and will allow you to add further model files to the exposure if desired.

The wizard shows a subgroup for each CellML file to be included in the exposure. For each CellML file, select
the following options:

• Documentation

– Documentation file - select the HTML file created to document the model

– View generator - select HTML annotator option

• Basic Model Curation

– Curation flags - CellML model repository curators may select flags according to the status of the
model

• License and Citation

– File/Citation format - select CellML RDF metadata to automatically generate a citation page using
the model RDF

6.4. Creating CellML exposures 119

http://models.cellml.org/workspace/beeler_reuter_1977/file/fdd29a005ffcf9a72d7ef2479cafb864ea1e887a/beeler_reuter_1977_documentation.html

ABI Software Book, Release 0.2-PMR@HARMONY

– License - select Creative Commons Attributions 3.0 Unported

• Source Viewer

– Language Type - select xml

• OpenCell Session Link

– Session File - select the session.xml if it has been created

Fig. 6.16: Selecting options for the model file subgroup

After selecting the subgroup options, you need to click the Update button to set the chosen options for the exposure
builder. If you do not update the subgroup, the options you selected will be replaced by the default options when
you click Build.

For exposures where you wish to expose multiple models, click on the Add file button at this stage to create another
subgroup. You can then use this to set up all the same options listed above for the additional model file. Remember
to click Update when you have completed selecting the options for each subgroup before adding another subgroup.

After setting all the options for the models you wish to expose, click on the Build button. The repository software
will then create the exposure pages and display the main page of the exposure.

In order to make the exposure visible and searchable, you will need to publish it. You can choose to submit your
exposure for review, or if you have sufficient privileges you can publish it directly.

120 Chapter 6. PMR user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 6.17: Publish your exposure to make it visible to others.

Other types of exposure

Because the exposure builder uses HTML documentation, it is possible to create customized types of exposure
that differ from the standard type shown above. For example, you might want to create an exposure that simply
documents and provides links to models in a PMR workspace that are encoded in languages other than CellML.
You can also use the HTML documentation to provide tutorials or other documents, with resources stored in the
workspace and linked to from the HTML.

Examples of other exposure types:

• Andre’s Hodgkin & Huxley CellML tutorial

• Testing nested SED-ML proposals with CellML

• Aslanidi et al. cardiac models encoded in C

Making an exposure using “roll-over”

As explained earlier, an exposure aims to bring a particular revision to the attention of users who are browsing and
searching the repository.

“Rolling over” an exposure is the method used when a workspace already has an existing exposure, and the
updates to the workspace have not fundamentally changed the structure of the workspace. This means that all
the information used in making the previous exposure is still valid for making a new exposure of a more recent
revision of the workspace. Strictly speaking, an exposure can be rolled over to an older revision as well, but this
is not the usual usage.

Note: A forked workspace contains all of the revision history of the workspace it was created from, but does not
contain any of the exposures that existed for the original workspace. You will always need to create an exposure
from scratch in newly forked repositories.

From the view page of your workspace, select “exposure rollover”.

6.4. Creating CellML exposures 121

http://models.cellml.org/e/e1
http://models.cellml.org/e/c2
http://models.cellml.org/e/ca

ABI Software Book, Release 0.2-PMR@HARMONY

The exposure rollover button takes you to a list of revisions of the workspace, with existing exposures on the right
hand side, and revision ids on the left. Each revision id has a radio button, used to select the revision you wish to
create a new rolled over exposure for. Each existing exposure also has a radio button, used to select the exposure
you wish to base your new one on. The most common use case is to select the latest exposure and the latest
revision, and then click the Migrate button at the bottom of the list.

The new exposure will be created and displayed. When a new exposure is created, it is initially put in the private
state. This means that only the user who created it or other users with appropriate permissions can see it, and it
will not appear in search results or model listings. In order to publish the exposure, you will need to select submit
for publication from the state menu.

The state will change to “pending review”. The administrator or curators of the repository will then review and
publish the exposure, as well as expiring the old exposure.

Creating FieldML exposures

Section author: Dougal Cowan

FieldML models in the Physiome Model Repository are presented through exposures. A FieldML exposure has
some similarities to a CellML exposure - usually consisting of a main documentation page with some information
about the model, accompanied by a range of different views of the model data and or metadata. FieldML exposures
also allow the real-time three-dimensional display of model meshes within the browser through the use of the Zinc
plugin.

The example screenshots below show the main documentation page view and the 3D visualization provided by
the Zinc viewer.

Creating the exposure files

To create a FieldML exposure, the following files will need to be stored in a workspace in PMR:

• The FieldML model file(s)

• An RDF file containing metadata about the model, and specifying the JSON file to be used to specify the
visualization.

• The JSON file that specifies the Zinc viewer visualization.

• Optionally, documentation (HTML) and images (PNG, JPG etc).

The following example RDF file from comes from the Laminar Structure of the Heart workspace in the FieldML
repository:

122 Chapter 6. PMR user documentation

http://www.cmiss.org/cmgui/zinc
http://www.cmiss.org/cmgui/zinc
http://models.fieldml.org/workspace/heart

ABI Software Book, Release 0.2-PMR@HARMONY

Fig. 6.18: The main documentation view of a FieldML exposure

Fig. 6.19: The main Zinc viewer view of the same FieldML exposure

6.5. Creating FieldML exposures 123

ABI Software Book, Release 0.2-PMR@HARMONY

1 <?xml version="1.0" encoding="utf-8"?>
2 <rdf:RDF
3 xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5 xmlns:dc="http://purl.org/dc/elements/1.1/"
6 xmlns:dcterms="http://purl.org/dc/terms/"
7 xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#"
8 xmlns:pmr2="http://namespace.physiomeproject.org/pmr2#">
9 <rdf:Description rdf:about="">

10 <dc:title>
11 Laminar structure of the Heart: A mathematical model.
12 </dc:title>
13 <dc:creator>
14 <rdf:Seq>
15 <rdf:li>LeGrice, I.J.</rdf:li>
16 <rdf:li>Hunter, P.J.</rdf:li>
17 <rdf:li>Smaill, B.H.</rdf:li>
18 </rdf:Seq>
19 </dc:creator>
20 <dcterms:bibliographicCitation>
21 American Journal of Physiology 272: H2466-H2476, 1997.
22 </dcterms:bibliographicCitation>
23 <dcterms:isPartOf rdf:resource="info:pmid/9176318"/>
24 <pmr2:annotation rdf:parseType="Resource">
25 <pmr2:type
26 rdf:resource="http://namespace.physiomeproject.org/pmr2/note#json_

→˓zinc_viewer"/>
27 <pmr2:fields>
28 <rdf:Bag>
29 <rdf:li rdf:parseType="Resource">
30 <pmr2:field rdf:parseType="Resource">
31 <pmr2:key>json</pmr2:key>
32 <pmr2:value>heart.json</pmr2:value>
33 </pmr2:field>
34 </rdf:li>
35 </rdf:Bag>
36 </pmr2:fields>
37 </pmr2:annotation>
38 </rdf:Description>
39 </rdf:RDF>

This file provides citation metadata and a reference to the resource that specifies the Zinc viewer JSON file which
will be used to describe the 3D visualisation of the FieldML model. The file breaks down into three main sections:

• Lines 3-8, namespaces used.

• Lines 10-23, citation metadata.

• Lines 24-37, resource description. Used to specify the JSON file that specifies the visualisation.

Example of the JSON file from the same (Laminar Structure of the Heart) workspace:

1 {
2 "View" : [
3 {
4 "camera" : [9.70448, -288.334, -4.43035],
5 "target" : [9.70448, 6.40667, -4.43035],
6 "up" : [-1, 0, 0],
7 "angle" : 40
8 }
9],

10 "Models": [
11 {
12 "files": [

124 Chapter 6. PMR user documentation

ABI Software Book, Release 0.2-PMR@HARMONY

13 "heart.xml"
14],
15 "externalresources": [
16 "heart_mesh.connectivity",
17 "heart_mesh.node.coordinates"
18],
19 "graphics": [
20 {
21 "type": "surfaces",
22 "ambient" : [0.4, 0, 0.9],
23 "diffuse" : [0.4, 0,0.9],
24 "alpha" : 0.3,
25 "xiFace" : "xi3_1",
26 "coordinatesField": "heart.coordinates"
27 },
28 {
29 "type": "surfaces",
30 "ambient" : [0.3, 0, 0.3],
31 "diffuse" : [1, 0, 0],
32 "specular" : [0.5, 0.5, 0.5],
33 "shininess" : 0.5,
34 "xiFace" : "xi3_0",
35 "coordinatesField" : "heart.coordinates"
36 },
37 {
38 "type": "lines",
39 "coordinatesField" : "heart.coordinates"
40 }
41],
42 "elementDiscretization" : 8,
43 "region_name" : "heart",
44 "group": "Structures",
45 "label": "heart",
46 "load": true
47 }
48]
49 }

• Lines 2-8, sets up the camera or viewpoint for the initial Zinc viewer display.

• Lines 12-18, specifies the FieldML model files

• Lines 19-41, set up the actual visualisations of the mesh - in this case, two different surfaces and a set of
lines.

• Lines 42-46, specify global visualisation settings.

For more information on these settings, please see the cmgui documentation.

Note: The specifics of these RDF and JSON files are a work in progress, and may change with each new version
of the Zinc viewer plugin or the PMR2 software.

Creating the exposure in the Physiome Model Repository

First you will need to create a workspace to put your model in, following the process outlined in the document on
working with workspaces.

• Upload your FieldML model files and Zinc viewer specification files.

• Find revision of workspace you wish to expose and create exposure

6.5. Creating FieldML exposures 125

ABI Software Book, Release 0.2-PMR@HARMONY

Exposure wizard procedure

View generator as per CellML; select HTML annotator and HTML doc file

New exposure file entry: select .rdf file and select FieldML (JSON) type. Click Add.

Documentation file - same as above Curation flags - none (should be removed?) No other settings

Click Update.

Click Build.

To see the 3D visualisation, you will need to have the latest Zinc plugin installed.

Using SED-ML to specify simulations

Section author: Dougal Cowan

Hopefully PMR will support SED-ML simulations as part of the CellML views.

Embedded workspaces and their uses

Introduction

Uses

Best practice

CellML Curation in PMR1

As PMR2 contains much of the data ported over from the PMR1 based CellML Model Repository, the curation
system from that system was ported to PMR2 verbatim. This document describing the curation aspect of the
repository is derived from documentation on the CellML site.

CellML Model Curation: the Theory

The basic measure of curation in a CellML model is described by the curation level of the model document. We
have defined four levels of curation:

• Level 0: not curated.

• Level 1: the CellML model is consistent with the mathematics in the original published paper.

• Level 2: the CellML models has been checked for (i) typographical errors, (ii) consistency of units, (iii) that
all parameters and initial conditions are defined, (iv) that the model is not over-constrained, in the sense that
it contains equations or initial values which are either redundant or inconsistent, and (v) that running the
model in an appropriate simulation environment reproduces the results published in the original paper.

• Level 3: the model is checked for the extent to which it satisfies physical constraints such as conservation of
mass, momentum, charge, etc. This level of curation needs to be conducted by specialised domain experts.

126 Chapter 6. PMR user documentation

http://www.cmiss.org/ReleaseCenter/zinc/releases

ABI Software Book, Release 0.2-PMR@HARMONY

CellML Model Curation: the Practice

Our ultimate aim is to complete the curation of all the models in the repository, ideally to the level that they
replicate the results in the published paper (level 2 curation status). However, we acknowledge that for some
models this will not be possible. Missing parameters and equations are just one limitation; at this point it should
also be emphasised that the process of curation is not just about “fixing the CellML model” so that it runs in
currently available tools. Occasionally it is possible for a model to be expressed in valid CellML, but not yet able
to be solved by CellML tools. An example is the seminal Saucerman et al. 2003 model, which contains ODEs
as well as a set of non-linear algebraic equations which need to be solved simultaneously. The developers of the
CellML editing and simulation environment OpenCell are currently working on addressing these requirements.

The following steps describe the process of curating a CellML model:

• Step 1: the model is run through OpenCell and COR. COR in particular is a useful validation tool. It ren-
ders the MathML in a human readable format making it much easier to identify any typographical errors
in the model equations. COR also provides a comprehensive error messaging system which identifies ty-
pographical errors, missing equations and parameters, and any redundancy in the model such as duplicated
variables or connections. Once these errors are fixed, and assuming the model is now complete, we com-
pare the CellML model equations with those in the published paper, and if they match, the CellML model
is awarded a single star - or level 1 curation status.

• Step 2: Assuming the model is able to run in OpenCell and COR, we then go onto compare the CellML
model simulation output from COR and OpenCell with the published results. This is often a case of compar-
ing the graphical outputs of the model with the figures in the published paper, and is currently a qualitative
process. If the simulation results from the CellML model and the original model match, the CellML model
is awarded a second star - or level 2 curation status.

• Step 3: if, at the end of this process, the CellML model is still missing parameters or equations, or we
are unable to match the simulation results with the published paper, we seek help from the original model
author. Where possible, we try to obtain the original model code, and this often plays an invaluable role in
fixing the CellML model.

• Step 4: Sometimes we have been able to engage the original model author further, such that they take over
the responsibility of curating the CellML model themselves. Such models include those published by Mike
Cooling and Franc Sachse. In these instances the CellML model is awarded a third star - or level 3 curation
status. While this is laudable, ideally we would like to take the curation process one step further, such that
level 3 curation should be performed by a domain expert who is not the author of the original publication
(i.e., peer review). This expert would then check the CellML model meets the appropriate constraints and
expectations for a particular type of model.

A point to note is that levels 1 and 2 of the CellML model curation status may be mutually exclusive - in our
experience, it is rare for a paper describing a model to contain no typographical errors or omissions. In this
situation, Version 1 of a CellML model usually satisfies curation level 1 in that it reflects the model as it is described
in the publication - errors included, while subsequent versions of the CellML model break the requirements for
meeting level 1 curation in order to meet the standards of level 2. Taking this idea further, this means that a model
with 2 yellow stars doesn’t necessarily meet the requirements of level 1 curation but it does meet the requirements
of level 2. Hopefully this conflict will be resolved when we replace the current star system with a more meaningful
set of curation annotations.

Ultimately, we would like to encourage the scientific modeling community - including model authors, journals
and publishing houses - to publish their models in CellML code in the CellML model repository concurrent with
the publication of the printed article. This will eliminate the need for code-to-text-to-code translations and thus
avoid many of the errors which are introduced during the translation process.

CellML Model Simulation: the Theory and Practice

As part of the process of model curation, it is important to know what tools were used to simulate (run) the model
and how well the model runs in a specific simulation environment. In this case, the theory and the practice are
essentially the same thing, and carry out a series of simulation steps which then translate into a confidence level
as part of a simulator’s metadata for each model. The four confidence levels are defined as:

6.8. CellML Curation in PMR1 127

ABI Software Book, Release 0.2-PMR@HARMONY

• Level 0: not curated (no stars);

• Level 1: the model loads and runs in the specified simulation environment (1 star);

• Level 2: the model produces results that are qualitatively similar to those previously published for the model
(2 stars);

• Level 3: the model has been quantitatively and rigorously verified as producing identical results to the
original published model (3 stars).

PMR glossary

Clone Clone is a Mercurial term that means to make a complete copy of a Mercurial repository. This is done in
order to have a local copy of a repository to work in.

Embedded workspace A Mercurial concept that allows workspaces to be virtually embedded within other
workspaces.

Exposure

Exposures A publicly available page that provides access to and information about a specific revision of a
workspace. Exposures are used to publish the contents of workspaces at points in time where the model(s)
contained are considered to be useful.

Exposures are created by the PMR software, and offer views appropriate to the type of model being exposed.
CellML files for example are presented with options such as code generation and mathematics display,
whereas FieldML models might offer a 3D view of the mesh.

Fork A copy of the workspace which includes all the original version history, but is owned by the user who
created the fork.

Mercurial Mercurial is a distributed version control system, used by the Physiome Model Repository software
to maintain a history of changes to files in workspaces.

Synchronize Used to pull the contents or changes from other Mercurial repositories into a workspace via a URI.

User folder A folder on the Physiome Model Repository, created automatically when you register your user-
name, which is used to store all of your workspaces.

The purpose of the user folder is to avoid workspace name clashes - users Jane and Bob can both have a
workspace called great_model_1, for example.

Workspace

Workspaces A Mercurial repository hosted on the Physiome Model Repository. This is essentially a folder or
directory in which files are stored, with the added feature of being version controlled by the distributed
version control system called Mercurial.

Todo

• Update all PMR documentation to reflect workspace ID changes and user workspace changes, if they go
ahead.

• Get embedded workspaces doc written.

• Get some best practice docs written.

128 Chapter 6. PMR user documentation

http://mercurial.selenic.com/
http://mercurial.selenic.com/

CHAPTER 7

Documentation to do list

General

Todo

• Add back the MAP client section when the application is ready for testing.

• Update all screenshots to Windows 7 (Or OS-X, or latest Ubuntu, as appropriate).

• Change names of OpenCMISS and cmgui to OpenCMISS Iron and OpenCMISS Zinc.

• Finalise content for About ABI section; avoid overlap with ABI website but provide links.

• Populate CellML API section

• Add many more references (.. _like-this:) to docs for cross-referencing.

Within sections

Todo

• Add back the MAP client section when the application is ready for testing.

• Update all screenshots to Windows 7 (Or OS-X, or latest Ubuntu, as appropriate).

• Change names of OpenCMISS and cmgui to OpenCMISS Iron and OpenCMISS Zinc.

• Finalise content for About ABI section; avoid overlap with ABI website but provide links.

• Populate CellML API section

• Add many more references (.. _like-this:) to docs for cross-referencing.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/abibook/checkouts/latest/ABIBook-
TODO.rst, line 10.)

Todo

129

ABI Software Book, Release 0.2-PMR@HARMONY

• This entire section.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/abibook/checkouts/latest/MAP/index.rst,
line 13.)

Todo

• Update all PMR documentation to reflect workspace ID changes and user workspace changes, if they go
ahead.

• Get embedded workspaces doc written.

• Get some best practice docs written.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/abibook/checkouts/latest/PMR/index.rst,
line 26.)

Todo

Add some useful command examples to command window doc - eg. “saving” graphics

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/abibook/checkouts/latest/cmgui/index.rst,
line 34.)

130 Chapter 7. Documentation to do list

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

131

ABI Software Book, Release 0.2-PMR@HARMONY

132 Chapter 8. Indices and tables

Index

C
Clone, 128

E
Embedded workspace, 128
Exposure, 128
Exposures, 128

F
Fork, 128

M
Mercurial, 128

P
PMR web interface, 108

S
Synchronize, 128

U
User folder, 128

W
Workspace, 128
Workspaces, 128

133

	About the ABI
	ABI research case studies
	CellML API user documentation
	Cmgui user documentation
	OpenCMISS user documentation
	PMR user documentation
	Documentation to do list
	Indices and tables

